Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Veggie juice that illuminates the gut

12.07.2016

The medical imaging drink, developed to diagnose and treat gastrointestinal illnesses, is made of concentrated chlorophyll, the pigment that makes spinach green

The pigment that gives spinach and other plants their verdant color may improve doctors' ability to examine the human gastrointestinal tract.


A new University at Buffalo-led study suggests that chlorophyll-based nanoparticles are an effective imaging agent for the gut.

Credit: University at Buffalo.

That's according to a study, published today (July 11, 2016) in the journal Advanced Materials, which describes how chlorophyll-based nanoparticles suspended in liquid are an effective imaging agent for the gut.

"Our work suggests that this spinach-like, nanoparticle juice can help doctors get a better look at what's happening inside the stomach, intestines and other areas of the GI tract," says Jonathan Lovell, PhD, assistant professor in the Department of Biomedical Engineering at UB's School of Engineering and Applied Sciences, and the study's corresponding author.

To examine the gastrointestinal tract, doctors typically use X-rays, magnetic resonance imaging or ultrasounds, but these techniques are limited with respect to safety, accessibility and lack of adequate contrast, respectively.

Doctors also perform endoscopies, in which a tiny camera attached to a thin tube is inserted into the patient's body. While effective, this procedure is challenging to perform in the small intestine, and it can cause infections, tears and pose other risks.

The new study, which builds upon Lovell's previous medical imaging research, is a collaboration between researchers at UB and the University of Wisconsin-Madison. It focuses on Chlorophyll a, a pigment found in spinach and other green vegetables that is essential to photosynthesis.

In the laboratory, researchers removed magnesium from Chlorophyll a, a process which alters the pigment's chemical structure to form another edible compound called pheophytin. Pheophytin plays an important role in photosynthesis, acting as a gatekeeper that allows electrons from sunlight to enter plants.

Next, they dissolved pheophytin in a solution of soapy substances known as surfactants. The researchers were then able to remove nearly all of the surfactants, leaving nearly pure pheophytin nanoparticles.

The drink, when tested in mice, provided imaging of the gut in three modes: photoacoustic imaging, fluorescence imaging and positron emission tomography (PET). (For PET, the researchers added to the drink Copper-64, an isotope of the metal that, in small amounts, is harmless to the human body.)

Additional studies are needed, but the drink has commercial potential because it:

  • Works in different imaging techniques.
  • Moves stably through the gut.
  • And is naturally consumed in the human diet already.

In lab tests, mice excreted 100 percent of the drink in photoacoustic and fluorescence imaging, and nearly 93 percent after the PET test.

"The veggie juice allows for techniques that are not commonly used today by doctors for imaging the gut like photoacoustic, PET, and fluorescence," says Lovell. "And part of the appeal is the safety of the juice."

###

The research was supported by a National Institutes of Health grant.

Media Contact

Cory Nealon
cmnealon@buffalo.edu
716-645-4614

 @UBNewsSource

http://www.buffalo.edu 

Cory Nealon | EurekAlert!

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>