Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers find mechanism that may stop E. coli from developing in cattle

12.05.2010
Microbiologists at UT Southwestern Medical Center, working with the Department of Agriculture, have identified a potential target in cattle that could be exploited to help prevent outbreaks of food-borne illnesses caused by a nasty strain of Escherichia coli.

In the study, available online and in an upcoming issue of the Proceedings of the National Academy of Sciences, researchers interfered with a genetic sensing mechanism that allows the E. coli strain known as enterohemorrhagic O157:H7, or EHEC, to form colonies within cattle, causing the bacteria to die off before they could reach the animals' recto-anal junction, the primary site of colonization. Most other strains of E coli gather in the colon.

"We're diminishing colonization by not letting EHEC go where it needs to go efficiently," said Dr. Vanessa Sperandio, associate professor of microbiology and biochemistry at UT Southwestern and senior author of the study. "If we can find a way to prevent these bacteria from ever colonizing in cattle, it's possible that we can have a real impact on human disease.

"This could be something as simple as including some sort of antagonist in cattle feed, which would result in less shedding of the bacteria in fecal matter with less contamination down the road in food products."

Dr. Sperandio said the finding is important because an estimated 70 percent to 80 percent of the cattle herds in the U.S. carry EHEC.

Although EHEC can be a deadly pathogen to humans, the bacterium is part of cattle's normal gastrointestinal flora. EHEC harbors a gene called sdiA, which makes the SdiA protein. The SdiA protein senses a chemical made by microbes in the animal's rumen, the first of a cow's four stomachs, which serves as a large fermentation chamber. Detecting this signal allows EHEC to pass through the rumen and colonize the recto-anal junction.

For the study, the researchers injected two types of EHEC into the rumens of eight grain-fed adult cows. One mutant version lacked SdiA and could not detect the signal in the rumen. Another strain produced an enzyme that destroyed the chemicals in the rumen sensed by SdiA.

The researchers found that colonization diminished significantly when these EHEC strains were unable to sense the rumen chemicals. The process prevented the bacteria from moving on through the stomach and colonizing.

"If there's no signal, then there's no acid resistance, a requirement for the pathogen to make it to the recto-anal junction," Dr. Sperandio said. "Everybody had thought that this type of signaling occurred naturally in the gastrointestinal tract of mammals. Our finding serves as a proof-of-principle that we might be able to target this system to prevent food contamination."

EHEC, like other E coli strains, is usually transmitted through contaminated food. Recent outbreaks in the U.S. have been found in ground beef, spinach and raw sprouts. EHEC is responsible for outbreaks throughout the world of bloody diarrhea and hemolytic uremic syndrome – a condition that can lead to renal failure and death. Severe symptoms are most common in children, the elderly and immune-suppressed people.

Cattle are the primary source for most E coli infections in the U.S. When cattle waste reaches water sources near food crops, contamination can occur. Unsanitary slaughtering of cattle also can lead to cross-contamination of the beef itself, and shipment of infected food speeds the rate at which the public can become ill.

Dr. Sperandio said the next step is to assess what happens to cows fed a grass-based, rather than grain-based, diet.

Other UT Southwestern researchers involved in the study were Dr. Darya Terekhova, postdoctoral researcher in microbiology; and Dr. David Hughes, lead author and former graduate student in microbiology. Dr. Hughes is now at the University of Miami.

Researchers from the University of Idaho, UT Dallas, the USDA Agricultural Research Service and the University of Maryland School of Medicine also contributed to the study.

The study was funded by the National Institutes of Health, Burroughs Wellcome Fund, and the National Cattlemen's Beef Association.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>