Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using fragment-based approaches to discover new antibiotics

21.06.2018

In the July 2018 issue of SLAS Discovery, a review article summarizes new methods of fragment-based lead discovery (FBLD) to identify new compounds as potential antibiotics.

Authors Bas Lamoree and Roderick E. Hubbard of the University of York (UK) explain how FBLD works and illustrate its advantages over conventional high-throughput screening (HTS).


Using fragment-based approaches to discover new antibiotics.

Credit: Bas Lamoree and Roderick E. Hubbard

Specifically, how FBLD increases the chances of finding hit compounds; how its methods can deliver hits without the massive investment required for HTS; and how by starting small, FBLD gives medicinal chemists more opportunities to build more drug-like compounds.

These principles are illustrated in the review and supported with recent examples of discovery projects against a range of potential antibiotic targets.

The rise in antibiotic resistance is now recognized as a real threat to human health. However, no new antibiotics have been developed in many decades. FBLD begins by identifying low molecular weight compounds (fragments), which bind to protein targets. Information on how the fragments bind to their protein targets is then used to grow the compounds into potent drug candidates. Because the fragments are small, they are more likely to fit into a binding site and each fragment represents a huge number of potential compounds.

###

Using Fragment-Based Approaches to Discover New Antibiotics can be accessed for free at http://journals.sagepub.com/doi/full/10.1177/2472555218773034. For more information about SLAS and its journals, visit http://www.slas.org/journals.

A PDF of this article is available to credentialed media outlets upon request. Contact nhallock@slas.org.

About our Society and Journals

SLAS (Society for Laboratory Automation and Screening) is an international community of nearly 20,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS DISCOVERY: 2016 Impact Factor 2.444. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA). SLAS Discovery (Advancing Life Sciences R&D) was previously published (1996-2016) as the Journal of Biomolecular Screening (JBS).

SLAS TECHNOLOGY: 2016 Impact Factor 2.850. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore). SLAS Technology (Translating Life Sciences Innovation) was previously published (1996-2016) as the Journal of Laboratory Automation (JALA).

Follow SLAS on Twitter at @SLAS_Org.

Follow SLAS on Facebook at SocietyforLaboratoryAutomationandScreening.

Follow SLAS on YouTube at SLASvideo.

Follow SLAS Americas on LinkedIn at Society for Laboratory Automation and Screening (SLAS Americas).

Follow SLAS Europe on LinkedIn at Society for Laboratory Automation and Screening Europe (SLAS Europe).

Media Contact

Nan Hallock
nhallock@slas.org
630-256-7527 x106

 @SLAS_Org

https://www.slas.org/ 

Nan Hallock | EurekAlert!
Further information:
http://dx.doi.org/10.1177/2472555218773034

Further reports about: antibiotics high-throughput screening

More articles from Health and Medicine:

nachricht The healing effect of radon
23.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Energizing the immune system to eat cancer
22.01.2019 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A New Home for Optical Solitons

23.01.2019 | Physics and Astronomy

Graphene and related materials safety: human health and the environment

23.01.2019 | Materials Sciences

Blood test shows promise for early detection of severe lung-transplant rejection

23.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>