USC scientist develops virus that targets HIV

In what represents an important step toward curing HIV, a USC scientist has created a virus that hunts down HIV-infected cells.

Dr. Pin Wang's lentiviral vector latches onto HIV-infected cells, flagging them with what is called “suicide gene therapy” — allowing drugs to later target and destroy them.

“If you deplete all of the HIV-infected cells, you can at least partially solve the problem,” said Wang, chemical engineering professor with the USC Viterbi School of Engineering.

The process is analogous to the military practice of “buddy lasing” — that is, having a soldier on the ground illuminate a target with a laser to guide a precision bombing strike from an aircraft.

Like a precision bombing raid, the lentiviral vector approach to targeting HIV has the advantage of avoiding collateral damage, keeping cells that are not infected by HIV out of harm's way. Such accuracy has not been achieved by using drugs alone, Wang said.

So far, the lentiviral vector has only been tested in culture dishes and has resulted in the destruction of about 35 percent of existing HIV cells. While that may not sound like a large percentage, if this treatment were to be used in humans, it would likely be repeated several times to maximize effectiveness.

Among the next steps will be to test the procedure in mice. While this is an important breakthrough, it is not yet a cure, Wang said.

“This is an early stage of research, but certainly it is one of the options in that direction,” he said.

Wang's research, which was funded by the National Institutes of Health, appears in the July 23 issue of Virus Research.

Media Contact

Robert Perkins EurekAlert!

More Information:

http://www.usc.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors