Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uranium exposure linked to increased lupus rate

14.11.2012
People living near a former uranium ore processing facility in Ohio are experiencing a higher than average rate of lupus, according a new study conducted by scientists at the University of Cincinnati and Cincinnati Children's Hospital Medical Center.

Lupus is a chronic inflammatory disease that can affect the skin, joints, kidneys, lungs, nervous system and other organs of the body. The underlying causes of lupus are unknown, but it is usually more common in women of child-bearing age.

For this new study, a collaborative team of UC and Cincinnati Children's researchers wanted to compare lupus rates between people who were exposed to uranium and those who were not in an effort to explain the high number of lupus cases reported in a Cincinnati community.

Extensive review of medical records and serum antibody analysis to verify the cases, concluded that people who were exposed to higher levels of uranium, based on their living proximity to a former uranium ore processing plant, had lupus rates four times higher than the average population.

"Former studies have suggested that people with lupus may be more sensitive to radiation and that both genetics and environmental exposures play a role in disease development. Our study shows a strong correlation between uranium exposure, a radioactive substance, and an increased lupus rate that merits further investigation," says Pai-Yue Lu, MD, a pediatric rheumatology fellow at Cincinnati Children's and lead researcher for the study.

"With more research in this area, we may gain additional insight on the types of environmental factors that contribute to lupus development and the mechanisms by which they work," Lu adds. "There could be other effects of uranium and related exposures that could contribute to or help explain our findings."

Lu is presenting this finding and its potential implication at the American College of Rheumatology Annual Scientific Meeting Monday, Nov. 12, in Washington, D.C. She completed the project as part of her master's degree in clinical and translational science training at UC.

The Cincinnati-based team's research is based on nearly two decades of data collected through the Fernald Medical Monitoring Program, the United States' first and largest legally mandated comprehensive medical monitoring program. The program was established in 1990 after a federal investigation revealed that National Lead of Ohio's Feed Materials Production Center in the Hamilton County, Ohio, community of Fernald, was emitting dangerous levels of uranium dust and gases into the surrounding communities.

"The availability of this cohort and carefully collected data and biospecimens provides a great setting to ask research questions," says Susan Pinney, PhD, UC professor of environmental health and principal investigator of the Fernald study.

Almost 10,000 community residents enrolled in the Fernald Medical Monitoring Program. Community residents were classified into several exposure groups: high exposure, moderate exposure, low exposure and no exposure. (Uranium plant workers were not part of this study.)

"Typical U.S. incidence rates for lupus are 1.8 to 7.6 cases per 100,000. Among the 25 confirmed lupus cases we identified through the Fernald community cohort, 12 were in the high exposure group, eight with moderate exposure and five in the low exposure group," says Lu.

Research was supported by a pilot grant from a Center for Environmental Genetics, a National Institute of Environmental Health Sciences-funded program to support core facilities and technologies needed to conduct innovative research that focuses on how environmental agents interact with genetic and epigenetic factors to influence disease risk and outcome. Shuk-mei Ho, PhD, Jacob A. Schmidlapp Chair and Professor of Environmental Health, serves as principal investigator of the CEG grant.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Health and Medicine:

nachricht Targeting certain rogue T cells prevents and reverses multiple sclerosis in mice
07.10.2019 | Boston Children's Hospital

nachricht Immune cell identity crisis: What makes a liver macrophage a liver macrophage?
04.10.2019 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>