Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto breakthrough allows fast, reliable pathogen identification

13.06.2013
Life-threatening bacterial infections cause tens of thousands of deaths every year in North America. Increasingly, many infections are resistant to first-line antibiotics.

Unfortunately, current methods of culturing bacteria in the lab can take days to report the specific source of the infection, and even longer to pinpoint the right antibiotic that will clear the infection. There remains an urgent, unmet need for technologies that can allow bacterial infections to be rapidly and specifically diagnosed.

Researchers from the University of Toronto have created an electronic chip with record-breaking speed that can analyze samples for panels of infectious bacteria. The new technology can report the identity of the pathogen in a matter of minutes, and looks for many different bacteria and drug resistance markers in parallel, allowing rapid and specific identification of infectious agents. The advance was reported this month in the journal Nature Communications.

"Overuse of antibiotics is driving the continued emergence of drug-resistant bacteria," said Shana Kelley (Pharmacy and Biochemistry), a senior author of the study. "A chief reason for use of ineffective or inappropriate antibiotics is the lack of a technology that rapidly offers physicians detailed information about the specific cause of the infection."

The researchers developed an integrated circuit that could detect bacteria at concentrations found in patients presenting with a urinary tract infection. "The chip reported accurately on the type of bacteria in a sample, along with whether the pathogen possessed drug resistance," explained Chemistry Ph.D. student Brian Lam, the first author of the study.

One key to the advance was the design of an integrated circuit that could accommodate a panel of many biomarkers. "The team discovered how to use the liquids in which biological samples are immersed as a 'switch' – allowing us to look separately for each biomarker in the sample in turn," said Ted Sargent (Electrical and Computer Engineering), the other senior author of the report.

"The solution-based circuit chip rapidly and identifies and determines the antibiotic resistance of multiple pathogens – this represents a significant advance in biomolecular sensing," said Paul S. Weiss, Kavli Chair in NanoSystems Science and Director of the California NanoSystems Institute at UCLA.

Ihor Boszko, Director of Business Development at Xagenic, a Toronto-based in vitro diagnostics company said the breakthrough could have significant practical implications. "This kind of highly sensitive, enzyme-free electrochemical detection technology will have tremendous utility for near patient clinical diagnostics. Multiplexing of in vitro diagnostic approach adds the capability of simultaneously testing for multiple viruses or bacteria that produce similar clinical symptoms. It also allows for simple and cost effective manufacturing of highly multiplexed electrochemical detectors, which will certainly have a significant impact on the availability of effective diagnostic tools."

Other authors of the paper were Jagotamoy Das (Chemistry), Richard Holmes (Pharmacy) and Ludovic Live and Andrew Sage (Institute of Biomaterials & Biomedical Engineering). The paper, "Solution-based circuits enable rapid and multiplexed pathogen detection," can be found at http://www.nature.com/ncomms/2013/130612/ncomms3001/full/ncomms3001.html

Terry Lavender | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht Discovery shows promise for treating Huntington's Disease
05.08.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>