Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Houston researchers identify less-invasive method for kidney diagnostics

01.06.2015

Optical probe would allow diagnosis without kidney biopsy, reducing complications

University of Houston researchers have identified a new, less-invasive method to provide diagnostic information on kidney disease and its severity.

In a paper published this month in the Journal of Biophotonics, Wei-Chuan Shih, assistant professor of electrical and computer engineering, and Chandra Mohan, Hugh Roy and Lillie Cranz Cullen, endowed professor of biomedical engineering, describe the use of an optical probe and Raman spectroscopy to differentiate between healthy and diseased kidneys.

Additional authors on the paper are Jingting Li, Yong Du, Ji Qi and Ravikumar Sneha, all of the University of Houston, and Anthony Chang of the University of Chicago.

Physicians traditionally use renal biopsy to directly observe kidney function. In addition to potential side effects, the number of renal biopsies a patient can undergo is limited because of damage to the kidney tissue.

For the study, Shih and Mohan did not look for a specific molecule or biomarker, such as creatinine, a molecular indicator of kidney function. Instead, the researchers relied upon the fact that a healthy kidney and a diseased kidney produce different Raman signals.

'There are some molecules that must be responsible for these different Raman signals, but we don't need to know what those molecules may be,' Mohan said. 'As long as there's a difference in the signal, that's good enough -- you can easily differentiate between a diseased kidney's Raman signal and a healthy kidney's Raman signal.'

Shih's expertise is in molecular sensing using light-based sensing technologies, such as optical probes. Mohan works on the genomics and proteomics of lupus and other autoimmune diseases, searching for new biomarkers and targets for treating autoimmune diseases.

Working together, the two realized that Shih's optical probes, which have been used for applications ranging from non-invasive glucose monitoring to sensing environmental hazards such as oil spills, could also be used to determine creatinine levels in patients with kidney disease.

'Raman spectroscopy provides molecular fingerprints that enable non-invasive or minimal invasive and label-free detection for the quantification of subtle molecular changes,' they wrote. 'It has the potential to largely reduce the complexity in diagnosing and monitoring anti-GBM (glomerular basement membrane) diseases. By adapting multivariate analysis to Raman spectroscopy, we have successfully differentiated between the diseased and the non-diseased with up to 100 percent accuracy, and among the severely diseased, the mildly diseased and the healthy with up to 98 percent accuracy.'

About 40 percent of lupus patients develop lupus nephritis, impairing their ability to effectively shed waste products and other toxins. Lupus nephritis is a leading cause of lupus-related deaths.

Earlier this year, Shih and Mohan collaborated on a paper published in Biomedical Optics Express to describe using the optical probes to provide a cheaper, faster and less invasive alternative to drawing blood to monitor a patient's creatinine levels.

Because creatinine has a unique Raman scattering signal, Shih said the optical probes can detect creatinine levels with far higher sensitivity than the chemical assay tests currently used. And the probe needs only a tiny sample of urine -- 5 microliters -- to provide an accurate reading.

For the work described in the Journal of Biophotonics, Shih and Mohan used mouse models with induced kidney disease to demonstrate the optical probe's ability to differentiate between a healthy and a diseased kidney without puncturing the organ. Shih's research team developed a metric to broadly quantify the level of disease using the Raman scattering signals.

'We are proposing the nephrologist will puncture the patient's skin, go to the surface of the kidney, and not puncture the kidney, but probe the surface of the tissue and acquire Raman signals,' Mohan said. 'The patient will feel a little pinch and poke through the skin, but the kidney is not hurt at all.'

The optical probe would be expected to result in far fewer complications, although Shih and Mohan caution that more research is needed before it can replace the kidney biopsy for patients with renal disease.

Media Contact

Jeannie Kever
jekever@uh.edu
713-743-0778

 @UH_News

http://www.uh.edu/news-events 

Jeannie Kever | EurekAlert!

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>