Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the links between inflammation and chronic disease

31.05.2012
Early exposure to microbes reduces inflammation related to chronic disease later

American parents may want to think again about how much they want to protect their children from everyday germs.

A new Northwestern University study done in lowland Ecuador remarkably finds no evidence of chronic low-grade inflammation -- associated with diseases of aging like cardiovascular disease, diabetes and dementia.

In contrast, about one-third of adults in the United States have chronically elevated C-reactive protein (CRP). Acute elevations in CRP -- a protein in the blood whose levels rise as part of the inflammatory response -- are important for protecting us against infectious disease. But when CRP is chronically produced, it is associated with chronic diseases.

"In other words, CRP goes up when you need it, but it is almost undetectable when you don't, after the infection resolves," said Thomas W. McDade, professor of anthropology at Northwestern and faculty fellow at the university's Institute for Policy Research. "This is a pretty remarkable finding, and very different from prior research in the U.S., where lots of people tend to have chronically elevated CRP, probably putting them at higher risk for chronic disease."

McDade said the findings build on his previous research in the Philippines, which found that higher levels of microbial exposure in infancy were associated with lower CRP as an adult. Similar exposures during infancy in lowland Ecuador, where rates of infectious disease continue to be high, may have a lasting effect on the pattern of inflammation in adulthood.

"In my mind the study underscores the value of an ecological approach to research on the immune system, and it may have significant implications for our understanding of the links between inflammation and chronic disease," McDade said. "This may be particularly important since nearly three-quarters of all deaths due to cardiovascular disease globally now occur in low- and middle-income nations like the Philippines and Ecuador."

The new research, which was conducted as part of the Shuar Health and Life History Project (http://www.bonesandbehavior.org/shuar/), suggests that higher levels of exposure to infectious microbes early in life may change how we regulate inflammation as adults in ways that prevent chronic inflammation from emerging. Infectious microbes have been part of the human ecology for millennia, and it is only recently that more hygienic environments in affluent industrialized settings have substantially reduced the level and diversity of exposure.

A growing body of research has shown that higher levels of chronic inflammation are associated with diseases of aging like cardiovascular disease, diabetes and dementia. But current research is based almost exclusively on people living in affluent industrialized countries like the United States.

"We simply do not know what chronic inflammation looks like in places like the Ecuadorian Amazon and other parts of the world where infectious diseases are more common," McDade said.

As a result, McDade, director of the Lab for Human Biology Research and director of Cells to Society (C2S): The Center on Social Disparities and Health, and collaborators at the University of Oregon set out to investigate what factors in the environment and during development influence how people regulate inflammation as adults. The study was conducted in lowland Ecuador – in a group of 52 adults between the ages of 18 and 49.

Based on current clinical criteria, McDade and colleagues did not find a single case of chronic low-grade inflammation among adults living in the Ecuadorian Amazon. McDade said people in these places are still dying of diseases such as cardiovascular disease, but probably not through processes that involve inflammation.

In terms of population health, McDade said these findings suggest that the association between inflammation and cardiovascular disease frequently reported in the United States may only apply in ecological settings characterized by low levels of exposure to infectious disease.

"It builds on research on chronic inflammation and cardiovascular disease in the U.S. and other affluent, industrialized settings and suggests that patterns seen here may not apply globally," McDade said. "It also suggests that the levels of chronic inflammation we see in the U.S. are not universal, and may be a product of epidemiological transitions that have lowered our level of exposure to infectious microbes."

"Analysis of Variability of High Sensitivity C-Reactive Protein in Lowland Ecuador Reveals No Evidence of Chronic Low-Grade Inflammation" is currently available online in the Early View section of the American Journal of Human Biology (http://onlinelibrary.wiley.com/journal/10.1002/%28ISSN%291520-6300/earlyview). The study's co-authors are Paula S. Tallman, Department of Anthropology, Northwestern University; and Felicia C. Madimenos, Melissa A. Liebert, Tara J. Cepon, Lawrence S. Sugiyama and J. Josh Snodgrass, all with the Department of Anthropology at the University of Oregon and its Institute of Cognitive and Decision Sciences. Sugiyama is also affiliated with the Center for Evolutionary Psychology, University of California, Santa Barbara.

Hilary Hurd Anyaso | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht A new method of tooth repair? Scientists uncover mechanisms to inform future treatment
09.08.2019 | University of Plymouth

nachricht Take a break! Brain stimulation improves motor learning
08.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>