Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study finds cholesterol regulator plays key role in development of liver scarring, cirrhosis

31.03.2011
UCLA researchers have demonstrated that a key regulator of cholesterol and fat metabolism in the liver also plays an important role in the development of liver fibrosis — the build-up of collagen scar tissue that can develop into cirrhosis. Cirrhosis, in turn, is a major cause of premature death and is incurable without a liver transplant.

Published in the March issue of the journal Gastroenterology, the study shows that liver X receptors (LXRs), master regulators of cholesterol, fat and inflammatory gene expression, also control the fibrosis-making cells of the liver, known as hepatic stellate cells.

In the face of chronic liver injury — due to excess fat, chronic viral hepatitis or alcohol abuse, for example — stellate cells become activated and launch an inflammatory and fibrotic cascade that eventually results in the build-up of collagen scar tissue in the liver.

LXRs, when stimulated, "turn on" several hundred genes that hold instructions to create proteins for carrying out bodily processes in cells, from transporting and excreting cholesterol to synthesizing fat in the liver. They have also been shown to suppress inflammatory processes in several contexts.

"Our work sets the stage for looking at new ways to modulate cholesterol and/or fat metabolism in order to have therapeutic potential for the treatment of fibrosing liver diseases," said lead author Dr. Simon Beaven, an assistant professor of digestive diseases at the David Geffen School of Medicine at UCLA.

The research was done in the laboratory of senior author Dr. Peter Tontonoz, a professor of pathology and laboratory medicine at the Geffen School of Medicine and a Howard Hughes Medical Institute investigator.

Beaven noted that the recent rise in obesity has resulted in a surge in the prevalence of a condition known as fatty liver, which can be a precursor to fibrosis and chronic liver disease. Simple fatty liver, also known as non-alcoholic fatty liver disease, or NAFLD, is one of the most common reasons patients consult a liver doctor in the United States. Cirrhosis due to fatty liver is skyrocketing and within a decade may become the most common indication for liver transplantation.

Beaven said the need to find better treatments for liver disease is crucial.

"A 'holy grail' for liver researchers is to develop anti-fibrotic treatments that target activated stellate cells in order to slow or prevent the development of cirrhosis," Beaven said. "Our study offers the first detailed look at how LXRs specifically impact the activation of hepatic stellate cells and the subsequent development of liver fibrosis in animal models."

UCLA researchers have found that LXRs normally play a role in helping to reduce the collagen-producing actions of stellate cells when the cells are "activated" by liver damage. For the study, UCLA scientists first tested how activated stellate cells taken from mice would react when a chemical that induces LXR activity was added to the cell culture.

In stellate cells from normal mice, LXRs suppressed the inflammatory and fibrosis-promoting program. But in those taken from mice genetically lacking LXRs, that same program of genes significantly increased because the inhibitory effect of LXRs was no longer present.

"We showed that LXRs dampen stellate cell activation by repressing inflammatory and collagen-producing genes," Beaven said.

To further gauge the strength of the response, scientists took the medium from the cultures of LXR-deficient cells and added it to stellate cells from normal mice. These cells then showed a markedly exaggerated inflammatory and collagen-producing response, suggesting that LXR-deficient stellate cells are secreting signals to promote fibrosis.

The researchers noted that these experiments demonstrate that LXRs control a fibrotic response in stellate cells that can have a wide influence on neighboring cells.

The scientists also found that after replicating chronic liver injury, mice without LXRs had dramatically more liver fibrosis than normal mice.

"The genetic loss of LXRs rendered the mice susceptible to developing fibrotic liver disease," Beaven said.

But LXRs are also known to have important functions in the immune system. The researchers then wanted to know whether the effects they were seeing in animals were due to changes in stellate cell activity specifically or whether immune cells — derived from bone marrow — accounted for most of the effect. After extensive testing, the researchers found no differences

in the level of liver fibrosis among normal mice and animals lacking LXRs, suggesting that the contribution from the immune system was negligible.

"This finding, along with the cell culture studies, suggests that LXRs' influence on fibrosis most likely resides in altering stellate cell function in the liver," Beaven said. "This is a critical finding and opens an entire new field of study for stellate cell biologists."

Additional studies will further identify which genes in stellate cells are activated by LXRs and help researchers better understand the role of cholesterol metabolism in the fibrotic response.

This study was funded primarily by grants from the National Institutes of Health and the Howard Hughes Medical Institute. Collaborators from the University of Southern California were funded by core grants from the NIH and the Southern California Research Center for ALPD and Cirrhosis.

Other study authors included senior investigator Dr. Peter Tontonoz of the Howard Hughes Medical Institute; Kevin Wroblewski and Cynthia Hong from Tontonoz's lab; Jiaohong Wang and Hide Tsukamoto of the Southern California Research Center for ALPD and Cirrhosis, USC's Keck School of Medicine and the Department of Veterans Affairs Greater Los Angeles Healthcare System; and Steven Bensinger of the department of pathology at the David Geffen School of Medicine at UCLA.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>