Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA cancer scientists identify liposarcoma tumors that respond to chemotherapy

11.12.2012
Using a novel strategy, team finds tumors that can be imaged by FAC PET

Liposarcoma, the most common type of sarcoma, is an often lethal form of cancer that develops in fat cells. It is particularly deadly, in part, because the tumors are not consistently visible with positron emission tomography (PET) scans that use a common probe called FDG and because they frequently do not respond to chemotherapy.

Now, using a strategy that tracks cancer cells' consumption of nucleosides, a team of researchers at UCLA's Jonsson Comprehensive Center has identified a group of liposarcoma tumors that can be imaged by PET scanning using a tracer substance known as FAC. Furthermore, they have found that these tumors are sensitive to chemotherapy.

The team's findings are published online in the journal Cancer Discovery and will appear in an upcoming print edition.

Led by Jonsson Cancer Center researcher Heather Christofk, an assistant professor of molecular and medical pharmacology at UCLA, the scientists employed a metabolomic strategy that detected nucleoside salvage activity in liposarcoma cells taken from patient samples, cells grown in the laboratory and cells grown in mouse models. The nucleoside activity was visible using PET with the UCLA-developed FAC probe (FAC PET), which measures the activity of the DNA salvage pathway, a fundamental cell biochemical pathway that acts as a sort of recycling mechanism to help with DNA replication and repair.

FAC was created by slightly altering the molecular structure of the standard chemotherapy drug gemcitabine, and in the current study, the UCLA research team discovered that the liposarcoma cells with high nucleoside salvage activity were sensitive to gemcitabine chemotherapy.

In clinical practice, this strategy might be used to identify liposarcoma patients, at the time of diagnosis, who would respond well to gemcitabine chemotherapy, saving time on other treatments and possibly extending the lives of this sub-group of patients.

"It was a satisfying study because it has translational potential for liposarcoma patients now — and this is a deadly disease," Christofk said. "Our metabolomic strategy is also generalizable to treatment strategies for other cancers, and that is something we hope to do."

The study was a collaboration between basic scientists and clinicians, following the translational paradigm of bench-to-bedside discoveries.

"This was an outstanding transdisciplinary project between a diverse group of physician scientists and basic scientists that translates molecular oncology from the laboratory to the clinic in a rapid and clinically relevant manner," said Dr. Fritz Eilber, an associate professor of surgery and of molecular and medical pharmacology at UCLA and an investigator on the study. "The findings from this work can be used to directly impact the care of patients with this morbid and lethal malignancy."

The research was supported in part by NIH grant P50CA0863062. Christofk is a Damon Runyon–Rachleff Innovation awardee, supported in part by the Damon Runyon Cancer Research Foundation, the Searle Scholars Program, the NIH Director's New Innovator Award (DP2 OD008454-01) and the Caltech/UCLA Nanosystems Biology Cancer Center (NCI U54 CA151819).

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson Center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2012, the Jonsson Cancer Center was once again named among the nation's top 10 cancer centers by U.S. News & World Report, a ranking it has held for 12 of the last 13 years.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Shaun Mason | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>