Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego researchers develop sensors to detect and measure cancer's ability to spread

06.12.2018

The spread of invasive cancer cells from a tumor's original site to distant parts of the body is known as metastasis. It is the leading cause of death in people with cancer. In a paper published online in iScience, University of California San Diego School of Medicine researchers reported engineering sensors that can detect and measure the metastatic potential of single cancer cells.

"Cancer would not be so devastating if it did not metastasize," said Pradipta Ghosh, MD, professor in the UC San Diego School of Medicine departments of Medicine and Cellular and Molecular Medicine, director of the Center for Network Medicine and senior study author.


A tumor cell that has acquired high metastatic potential during chemotherapy lights up with high FRET biosensor readout, whereas the cells that are sensitive to chemotherapy (and hence, low potential) stays dark.

Credit: UC San Diego Health


Pradipta Ghosh, MD, professor in the UC San Diego School of Medicine departments of Medicine and Cellular and Molecular Medicine, led a team that developed sensors that can detect and measure the metastatic potential of single cancer cells.

Credit: UC San Diego Health

"Although there are many ways to detect metastasis once it has occurred, there has been nothing available to 'see' or 'measure' the potential of a tumor cell to metastasize in the future.

So at the Center for Network Medicine, we tackled this challenge by engineering biosensors designed to monitor not one, not two, but multiple signaling programs that drive tumor metastasis; upon sensing those signals a fluorescent signal would be turned on only when tumor cells acquired high potential to metastasize, and therefore turn deadly."

Cancer cells alter normal cell communications by hijacking one of many signaling pathways to permit metastasis to occur. As the tumor cells adapt to the environment or cancer treatment, predicting which pathway will be used becomes difficult.

By comparing proteins and protein modifications in normal versus all cancer tissues, Ghosh and colleagues identified a particular protein and its unique modification called tyrosine-phosphorylated CCDC88A (GIV/Girdin) that are only present in solid tumor cells.

Comparative analyses indicated that this modification could represent a point of convergence of multiple signaling pathways commonly hijacked by tumor cells during metastasis.

The team used novel engineered biosensors and sophisticated microscopes to monitor the modification on GIV and found that, indeed, fluorescent signals reflected a tumor cell's metastatic tendency.

They were then able to measure the metastatic potential of single cancer cells and account for the unknowns of an evolving tumor biology through this activity. The result was the development of Fluorescence Resonance Energy Transfer (FRET) biosensors.

Although highly aggressive and adaptive, very few cancer cells metastasize and that metastatic potential comes and goes, said Ghosh. If metastasis can be predicted, this data could be used to personalize treatment to individual patients.

For example, patients whose cancer is not predicted to metastasize or whose disease could be excised surgically might be spared from highly toxic therapies, said Ghosh. Patients whose cancer is predicted to spread aggressively might be treated with precision medicine to target the metastatic cells.

"It's like looking at a Magic 8 Ball, but with a proper yardstick to measure the immeasurable and predict outcomes," said Ghosh.

"We have the potential not only to obtain information on single cell level, but also to see the plasticity of the process occurring in a single cell. This kind of imaging can be used when we are delivering treatment to see how individual cells are responding."

The sensors need further refinement, wrote the authors, but have the potential to be a transformative advance for cancer cell biology.

###

Co-authors include: Krishna Midde, Nina Sun, Cristina Rohena, Linda Joosen and Harsharan Dhillon, all at UC San Diego.

This research was funded in part by National Institutes of Health (CA100768, CA160911, DK099226), American Cancer Society (ACS-IRG 70-002), Padres Pedal the Cause/C3 (#PTC, 2017) pilot grant award and Moores Cancer Center intramural funding.

Media Contact

Yadira Galindo
ygalindo@ucsd.edu
858-249-0456

 @UCSanDiego

http://www.ucsd.edu 

Yadira Galindo | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.isci.2018.11.022

Further reports about: CANCER Medicine Metastasis cancer cells signaling pathways single cell tumor cells

More articles from Health and Medicine:

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

nachricht Researchers classify Alzheimer's patients in 6 subgroups
05.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

Im Focus: A golden age for particle analysis

Process engineers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a method which allows the size and shape of nanoparticles in dispersions to be determined considerably quicker than ever before. Based on gold nanorods, they demonstrated how length and diameter distributions can be measured accurately in just one step instead of the complicated series of electron microscopic images which have been needed up until now. Nanoparticles from precious metals are used, for example, as catalysts and contrast agents for diagnosing cancer. The results have been published in the renowned journal Nature Communications (doi: 10.1038/s41467-018-07366-9).

Even in the Middle Ages, gold particles were used to create vibrant red and blue colours, for example to illustrate biblical scenes in stained glass windows....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Artificial synapses made from nanowires

06.12.2018 | Life Sciences

Cereals use chemical defenses in a multifunctional manner against different herbivores

06.12.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>