Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC San Diego cancer scientists identify new drug target for multiple tumor types

12.07.2019

A dysfunctional enzyme involved in building cancer cell membranes helps fuel tumor growth; when it's disabled or depleted in mouse models, tumors shrank significantly

A research team headed by scientists at University of California San Diego School of Medicine and the Ludwig Institute for Cancer Research at UC San Diego has identified an enzyme involved in remodeling the plasma membrane of multiple cancer cell types that is critical to both survival of tumors and their uncontrolled growth.


A false color electron micrograph of two cancer cells.

Image courtesy of Thomas Deerinck, National Center for Microscopy and Imaging Research, UC San Diego.

The finding, published in the July 11, 2019 issue of Cell Metabolism, suggests a potential target for new drugs.

"Cancers are characterized not only by major changes in their genomes, but also by profound shifts in how they take up and utilize nutrients to propel rapid tumor growth," said senior author Paul S. Mischel, MD, professor in the UC San Diego School of Medicine Department of Pathology and Ludwig member. "How do these diverse aspects fit together and can they be taken advantage of, for the benefit of patients?"

In the new study, conducted in collaboration with Benjamin Cravatt, PhD, professor at Scripps Research, and led by first author Junfeng Bi, PhD, in Mischel's lab, researchers identified an enzyme called LPCAT1, whose levels increase in cancer and which plays a key role in tumor growth by changing the phospholipid composition of the cancer cells' plasma membrane, allowing amplified and mutated growth factor signals to spur tumor growth.

Without LPCAT1, tumors cannot survive. When researchers genetically depleted LPCAT1 in multiple types of cancer in mice, including highly lethal glioblastomas (brain) and an aggressive lung cancer, malignancies shrank dramatically and survival times improved.

The results, wrote the authors, demonstrate that LPCAT1 is an important enzyme that becomes dysregulated in cancer, linking common genetic alterations in tumors with changes in their metabolism to drive aggressive tumor growth."

"Advances in DNA sequencing technologies have reshaped our understanding of the molecular basis of cancer, suggesting a new and more effective way of treating cancer patients," said Mischel. "However, to date, precision oncology has yet to benefit many patients, motivating a deeper search into understanding how genetic alterations in tumors change the way cancer cells behave, and potentially unlocking new ways to more effectively treat patients.

"These results also suggest that LPCAT1 may be a very compelling new drug target in a wide variety of cancer types."

###

Co-authors include: Taka-Aki Ichu and Alex Reed, Skaggs Research; Ciro Zanca, Huijun Yang, Sudhir Chowdhry, Kristen M. Turner, Wenjing Zhang and Sihan Wu, Ludwig Institute for Cancer Research; Wei Zhang, Oswald Quehenberger, Jeremy N. Rich, Webster K. Cavenee and Frank B. Furnari, UC San Diego; Yuchao Gu and Genaro R. Villa, Ludwig and UCLA; Shiro Ikegami, Chiba University; William H. Yong, Harley I. Kornblum, and Timothy F. Cloughesy, UCLA.

Disclosure: Paul Mischel is co-founder of Pretzel Therapeutics. He has equity and serves as a consultant for the company. He also did one-time consultation for Abide Therapeutics.

Media Contact

Scott LaFee
slafee@ucsd.edu
858-249-0456

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.cmet.2019.06.014

More articles from Health and Medicine:

nachricht Bacteria engineered as Trojan horse for cancer immunotherapy
04.07.2019 | Columbia University School of Engineering and Applied Science

nachricht While resting, our brain replays experiences we made while making decisions
04.07.2019 | Max-Planck-Institut für Bildungsforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hubble discovers mysterious black hole disc

12.07.2019 | Physics and Astronomy

Super salty, subzero Arctic water provides peek at possible life on other planets

12.07.2019 | Life Sciences

UC San Diego cancer scientists identify new drug target for multiple tumor types

12.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>