Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Type 2 diabetes, cardiovascular disease may share deep roots

05.11.2014

A new study of genetic and health information from more than 15,000 women uncovered several potential ways that type 2 diabetes and cardiovascular disease may be related at the level of genes, proteins, and fundamental physiology.

Type 2 diabetes (T2D) and cardiovascular disease (CVD) appear to have a lot in common. They share risk factors such as obesity and they often occur together. If they also share the same genetic underpinings, then doctors could devise a way to treat them together too.


Common roots, common therapy?

A genetic network shows 10 proposed "key driver" genes that may have especially great influence in both type 2 diabetes and cardiovascular disease.

Liiu lab/Brown University

With that hope in mind, scientists applied multiple layers of analysis to the genomics of more than 15,000 women. In a new study they report finding eight molecular pathways shared in both diseases as well as several “key driver” genes that appear to orchestrate the gene networks in which these pathways connect and interact.

The scientists started by looking for individual genetic differences in women of three different ethnicities who had either or both of the conditions compared to similar but healthy women – a technique called a Genome Wide Association Study (GWAS).

But the team members didn’t stop there. They also analyzed the women’s genetic differences in the context of the complex pathways in which genes and their protein products interact to affect physiology and health.

“Looking at genes one by one is standard,” said Dr. Simin Liu, professor of epidemiology and medicine in the Brown University School of Public Health and a co-senior author of the study published in the American Heart Association journal Circulation: Cardiovascular Genetics. “But ultimately, the interactions of biology are fundamentally organized in a pathway and network manner.”

The study drew upon the genetic samples and health records of 8,155 black women, 3,494 Hispanic women and 3,697 white women gathered by the Women’s Health Initiative, a major research project funded by the National Heart, Lung and Blood Institute.

In comparing women with CVD and T2D to healthy women, lead author Kei Hang K. Chan, a postdoctoral fellow at the Center for Population Health and Clinical Epidemiology, and the team found key differences in eight pathways regulating cell adhesion (how cells stick within tissues), calcium signaling (how cells communicate), axon guidance (how neurons find their paths to connect with target sites), extracellular matrix (structural support within tissue), and various forms of cardiomyopathy (heart muscle problems).

These were all common across ethnicities. In addition the team found a few pathways that were ethnicity-specific between T2D and CVD.

Chan used five different methodologies to conduct these pathway analyses, reporting only those pathways that showed up as significant by at least two methods.

From there, the analysis moved further by subjecting the genes and their pathways to a network analysis to identify genes that could be “key drivers” of the diseases. The paper highlights a “top ten” list of them.

“These [key driver] genes represent central network genes which, when perturbed, can potentially affect a large number of genes involved in the CVD and T2D pathways and thus exert stronger impact on diseases,” wrote the authors, including co-senior author Xia Yang of the University of California–Los Angeles.

Potential therapeutic targets

To assess whether those genes made sense as key drivers, the research team looked them up in multiple databases that researchers have compiled about the importance of the genes in the health of mouse models.

In the paper they discuss the pathways they implicate in terms of how they could reasonably relate to the disease. For example, axon guidance, normally of note in how developing fetuses build the nervous system, involves mechanisms that also happen to sustain beta cells in the pancreas, which lies at the heart of diabetes. A breakdown in that pathway could leave the cells more vulnerable, affecting the processing of sugars.

With the pathways and key driver genes identified, Liu said, there are now ample opportunities for follow-up, both to refine the understanding of the role these pathways may play in vascular health outcomes and to design and test treatments that may repair them.

“Using a systems biology framework that integrates GWAS, pathways, gene expression, networks, and phenotypic information from both human and mouse populations, we were able to derive novel mechanistic insights and identify potential therapeutic targets,” the researchers wrote.

In addition to Liu, Chan, and Yang, other authors are Dr. Yen-Tsung Huang of Brown; Qingying Meng, Eric Sobel, and Aldons Lusis of UCLA; Chunyuan Wu and Lesley Tinker of the Fred Hutchinson Cancer Research Center in Seattle; and Alexander Reiner of the University of Washington.

The National Institutes of Health, the American Heart Association and the Leducq Foundation supported the research.


Note to Editors:
Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
https://news.brown.edu/articles/2014/11/cardiobetes

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>