Tuberculosis: On the path to prevention

Why do some people who are exposed to tuberculosis not become infected or develop the disease? Dr. Erwin Schurr and his team at the Research Institute from the McGill University Health Centre (RI-MUHC), in collaboration with Dr. Alexandre Alcais, from the Institut national de la santé et de la recherche médicale (INSERM) in Paris, has shed light on this question for the first time. Their results show that one or multiple genes might provide certain people with resistance to tuberculosis infection. Their findings are published in the Journal of Experimental Medicine.

Tuberculosis (TB) is an infectious disease caused by a bacterium called Mycobacterium tuberculosis (MTB). Two thirds of the world population are infected by this mycobacterium. Nevertheless, 20 per cent of people exposed to the mycobacterium are resistant to infection and can therefore, not develop the disease. ” For our study, we were interested in this minority of people who live in high-exposure areas without becoming infected,” said Dr. Schurr. “We tried to understand how these people develop resistance to TB infection.”

Their findings show the existence of a chromosomal site, or a locus, that controls resistance to TB infection. Out of the 128 families studied, who come from an area in South Africa with high tuberculosis rates, after considering non genetic factors such as age, 20 per cent of individuals show natural resistance. “In other words, some people seem to have a particular genetic heritage that makes them naturally resistant to MTB infection,” explained Dr. Alcais.

“The discovery of a genetic resistance factor is a major step forward in the fight against TB both locally and globally,” said Dr. Schurr. This is a major development for people with HIV, for whom tuberculosis is a leading cause of mortality, as it is responsible for about 13% of AIDS-related deaths in the world. “Since they accelerate each other's progress, HIV and tuberculosis are partners in crime; if we can prevent infection, immune deficient patients will no longer be threatened by TB,” stated Dr. Schurr.

“Right now, our challenge as researchers is to concentrate on identifying this genetic factor and its mechanisms that lead to resistance against TB infection,” explained Dr. Alcais. The hope is that these genetic resistance factors can be used in the near future to prevent TB infection in the general population by stimulating the mechanism responsible for resistance.

“If we can make everyone resistant to tuberculosis infection, this major public health problem could be wiped off the map,” concluded Dr. Schurr.

Dr. Erwin Schurr is a researcher at the Centre for the Study of Host Resistance at the Research Institue of the MUHC and a molecular geneticist at the Department of Human Genetics at the McGill Faculty of Medicine, McGill University

Dr. Alcais is a researcher at the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, France, University Paris Descartes, Necker Medical School, France, Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, USA.

Funding

This study was funded by a grant from the Canadian Institutes for Health Research (CIHR), Sequella/AERAS Global Tuberculosis Vaccine Foundation, and the Gates Foundation. Some authors received financial support from Fonds de la recherche en santé du Québec (FRSQ).

Partners

This article was co-authored by Caroline Gallant, Leah Simkin and Erwin Schurr from RI MUHC, Aurelie Cobat from INSERM U550, Paris, France; Jean-Laurent Casanova, Laurent Abel and Alexandre Alcais from INSERM U550, Université Paris Descartes, Paris, France and Laboratory of Human Genetics, The Rockefeller University, NYC, U.S.A; Ann Boland-Auge, Centre National de Génotypage, Evry, France, Mark Doherty, Statens Serum Institute, Copenhagen, Danemark, Gillian Black, Kim Stanley, Paul van Helden and Eileen Hoal, Stellenbosch University, Tygerberg, South Africa, Jane Hughes, Brian Eley, and Willem Hanekom, University of Cape Town, Cape Town, South Africa.

You will find this press release, with the original article and a short audio interview by following this link: http://www.muhc.ca/media/news/

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, the university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 600 researchers, nearly 1200 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The Research Institute of the MUHC is supported in part by the Fonds de la recherche en santé du Québec. For further details visit: www.muhc.ca/research

The McGill University Health Centre (MUHC) is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. Its partner hospitals are the Montreal Children's Hospital, the Montreal General Hospital, the Royal Victoria Hospital, the Montreal Neurological Hospital, the Montreal Chest Institute and the Lachine Hospital. The goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field and to contribute to the development of new knowledge. www.muhc.ca

About the MUHC Redevelopment Project Guided by its mission and its role as co-leaders of the McGill integrated university hospital network, the MUHC is carrying out a $2.2-billion Redevelopment Project that will help the Government achieve its vision for academic medicine in Quebec. Excellence in patient care, research, education and technology assessment will be fostered on three state-of-the-art campuses—The Mountain, the Glen and Lachine—and through strong relationships with healthcare partners. Each LEED®-registered campus will be designed to provide patients and their families with “The Best Care for Life” in a healing environment that is anchored in best sustainable development practices, including BOMA BESt guidelines. www.muhc.ca/construction

For more information please contact:
Julie Robert
Communications Coordinator (research)
Public Affairs & Strategic Planning
(514) 843 1560
julie.robert@muhc.mcgill.ca

Media Contact

Julie Robert EurekAlert!

More Information:

http://www.muhc.mcgill.ca

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors