Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatments to reduce anesthesia-induced injury in children show promise in animal studies

29.03.2012
Recent clinical studies have shown that general anesthesia can be harmful to infants, presenting a dilemma for both doctors and parents. But new research at Wake Forest Baptist Medical Center may point the way to treatment options that protect very young children against the adverse effects of anesthesia.
As detailed in a study published in the March 23 online edition of the journal Neuroscience, Wake Forest Baptist scientists explored a number of strategies designed to prevent anesthesia-induced damage to the brain in infants.

Using an animal model, the researchers tested the effectiveness of a fragment of a neuroprotective protein called ADNP, as well as vitamin D3, a low-level dose of anesthetic and aspirin. They found that three of the four strategies tested protected the brain from injury induced by 20 mg ketamine, a commonly used general anesthetic.
"What didn't work was aspirin, which was a surprise because aspirin is known to protect the brain from injury," said Christopher P. Turner, Ph.D., assistant professor of neurobiology and anatomy at Wake Forest Baptist and lead author of the study. "In fact, in our study aspirin actually increased the severity of injury from the anesthesia, possibly because it prevents the generation of substances that may be neuroprotective."

Turner and his team studied rats at ages equivalent to children from birth to age 4.

In separate tests, the rodents were injected with: NAP, a peptide fragment of activity-dependent neuroprotective protein (ADNP), 15 minutes before ketamine was administered; two 20-mg doses of vitamin D3, at 24 hours and at 15 minutes before 20 mg ketamine; a non-toxic (5 mg) doses of ketamine 24 hours before a toxic dose of 20 mg ketamine was administered; and a 30-mg dose of aspirin 15 minutes before exposure to ketamine.

The Turner lab found that NAP, vitamin D3 and prior exposure to low (non-toxic) ketamine could all prevent injury from exposure to a toxic (20 mg) level of ketamine. However, aspirin appeared to enhance ketamine-induced injury.

"We designed our studies to give doctors several possible treatment options because not all of these strategies may work in clinical applications," Turner said. "However, because vitamin D3 is already in clinical use, our findings show that it is quite promising with few risks. Further, NAP is currently in clinical trials to diminish the severity of other types of brain injury, so we feel this discovery represents a breakthrough for anesthesia-induced neurotoxicity. However, there may be a critical window of efficacy for NAP, which we need to explore further.

"Of all the approaches that our team studied, using a low dose of ketamine may be both the simplest and most cost-effective, as it suggests children can be pre-treated with the same anesthesia that will be used when they undergo general surgery," Turner added. "In essence, a low-level dose of ketamine primes the child's brain so that the second, higher dose is not as lethal, much like an inoculation."

The study was funded by the National Institutes of Health, Wake Forest Baptist Intramural Research Fundand the Tab Williams Family Neuroscience Endowment Fund.

Co-authors of the study are: Silvia Gutierrez, Ph.D., Chun Liu, Lance Miller, Ph.D., Jeff Chou, Ph.D., Beth Finucane, Ansley Carnes, James Kim, Elaine Shing, Tyler Haddad and Angela Phillips, all of Wake Forest Baptist.
Media contacts: Marguerite Beck, marbeck@wakehealth.edu, 336-716-2415; Media office main number, 336-716-4587.

Wake Forest Baptist Medical Center (www.wakehealth.edu) is a fully integrated academic medical center located in Winston-Salem, N.C. Wake Forest School of Medicine directs the education and research components, with the medical school ranked among the nation's best and recognized as a leading research center in regenerative medicine, cancer, the neurosciences, aging, addiction and public health sciences. Piedmont Triad Research Park, a division of Wake Forest Baptist, fosters biotechnology innovation in an urban park community. Wake Forest Baptist Health, the clinical enterprise, includes a flagship tertiary care hospital for adults, Brenner Children's Hospital, a network of affiliated community-based hospitals, physician practices and outpatient services. The institution's clinical programs and the medical school are consistently recognized as among the best in the country by U.S.News & World Report.

Marguerite Beck | EurekAlert!
Further information:
http://www.wakehealth.edu

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>