Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment for tuberculosis can be guided by patients' genetics

08.02.2012
Gene that influences inflammatory response to infection predicts effectiveness of drug therapy

A gene that influences the inflammatory response to infection may also predict the effectiveness of drug treatment for a deadly form of tuberculosis.

An international collaboration between researchers at the University of Washington in Seattle, Duke University, Harvard University, the Oxford University Clinical Research Unit in Vietnam and Kings College London reported these findings Feb. 3 in the journal Cell.

These results suggest the possibility of tailoring tuberculosis treatment, based on a patient's genetic sequence at a gene called LTA4H, which controls the balance between pro-inflammatory and anti-inflammatory substances produced during an infection.

Tuberculosis can take hold if disease-fighting inflammation is either too weak or too strong. The strength of the response is in part the result of a person's LTA4H gene sequence. Knowing whether a patient has the gene sequence for one extreme response or the other could help guide medication decisions.

Lalita Ramakrishnan, professor of microbiology, medicine and immunology at the University of Washington and the senior author of the study, said that the study suggested that that increased TB disease severity in humans can occur for fundamentally opposite reasons. "The ability to tailor therapies to these divergent inflammatory states, based on a patient's sequence at LTA4H, could improve patient outcomes."

This important observation for people began with a study of the tiny zebrafish. In these animals, the researchers linked mutations in the zebrafish version of the LTA4H gene to increased susceptibility to a TB-like infection. David Tobin, now on the faculty of the Department of Molecular Genetics and Microbiology at Duke University, is first author of the study. He performed the research while he was a postdoctoral fellow in the University of Washington laboratory of Dr. Ramakrishnan, working closely with another postdoctoral fellow Francisco Roca.

After they understood the biological basis of susceptibility to infection in the zebrafish, the researchers turned to the same gene in humans. They identified a sequence of the gene that led to higher activity and increased inflammation. They then collaborated with other researchers at the University of Washington, including Mary-Claire King, and researchers in Vietnam and the U.K., including Guy Thwaites, to study the gene among patients in Vietnam with TB. They discovered that patients carrying one copy of the high-activity sequence of the gene and one copy of the low-activity sequence were relatively protected from TB meningitis, a particularly deadly form of TB. Surprisingly, people with two copies of the high-activity sequence of the gene fared just as poorly as people with two copies of the low-activity sequence. This "heterozygous advantage," or "Goldilocks effect," is an unusual finding in human genetics.

King commented "Throughout human history, people with both forms of the LTA4H gene have probably been more likely to survive when exposed to TB than people with only one form of the LTA4H gene. This advantage may have led to both forms of the gene persisting in human populations. Selection by infectious diseases has had an enormous impact on the evolution of our species."

This surprising finding, the researchers noted, implicated both insufficient and overly abundant inflammation as different ways TB could take hold in the body. By analyzing clinical data from patients in Vietnam with a particularly severe form of TB called TB meningitis, the researchers found that anti-inflammatory therapy only benefited patients with the gene sequence that corresponds to excess inflammation. The patients with the insufficient inflammation gene sequence derived no benefit from what has been adopted as a standard therapy for TB meningitis.

Given the clinical and therapeutic implications of these findings, the researchers sought the underlying molecular mechanisms for both extremes. For this they turned back to the zebrafish.

In collaboration with Charles Serhan, of Harvard University they showed that one gene variant weakened inflammation through the overproduction of substances called lipoxins. Hyperinflammation results from a gene variant that leads to an excess of leukotriene B4. Either can interfere with the overall levels of tumor necrosis factor, a substance that, when present in normal amounts, protects against TB infection and other diseases.

Paradoxically, either a deficiency or an overkill of tumor necrosis factor can cause macrophages, the host cells that gobble up pathogens, to die by bursting and releasing the TB pathogens into a "permissive extracellular milieu where they can grow exuberantly into corded mats" the researchers said.

The researchers then discovered that corticosteroids, which are in wide clinical use, as well the active ingredient in aspirin decreased TB infection in zebrafish with the "hot responder" genotype, but increased TB infection in their "cold responder" genotype siblings.

The researchers concluded, "If patients succumb to TB for two fundamentally different reasons, then it is imperative to design therapeutic strategies that reflect this dichotomy. For example, if evaluating the treatment effects of dexamethasone on TB meningitis doesn't take into account host genotype, the very substantial benefits of the drug for the high-reactive genotype may be diluted by its neutral or possibly detrimental effects on individuals with the low-activity genotype."

A simple gene test for the high-responding variant, they said, could provide a rapid, inexpensive way to determine which patients would benefit from dexamethasone therapy added to standard infection-fighting drugs. They also believe clinical studies are urgently needed to be sure patients with the low-reactive genotype are not harmed by unnecessary dexamethasone treatment, and to find alternative treatment strategies for this group, such as agents that limit lipoxin production or boost inflammation.

Because the basic inflammatory biochemical pathways affected by the LTA4H gene are common to many infections, the researchers said TB treatment strategies suggested by their findings may hold promise for other serious infections.

The study was funded by grants from the National Institutes of Health, an American Cancer Society postdoctoral fellowship, a Mallinckrodt Scholar Award, a postdoctoral fellowship from the educational ministry of Spain, the Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases, the Burroughs Wellcome Fund, the Wellcome Trust, the American Skin Association, the Dermatology Foundation, and the Chinese Academy of Sciences.

Ramakrishnan is a recipient of the NIH Director's Pioneer Award, Tobin is a recipient of the NIH Director's New Innovator Award and King is an American Cancer Society Professor.

Others on the project team are Sungwhan F. Oh, Ross McFarland, Thad D. Vickery, John P. Ray, Dennis C. Ko, Yuxia Zou, Nguyen D. Bang, Tran T. H. Chau, Jay C. Vary, Thomas R. Hawn, Sarah J. Dunstan, and Jeremy J. Farrar.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht New method uses just a drop of blood to monitor lung cancer treatment
19.10.2018 | Osaka University

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>