Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Treatment for Muscular Dystrophy in Sight

17.03.2009
Scientists Harness Exon-Skipping in Large Animal to Successfully Treat Duchenne Muscular Dystrophy

Researchers from Children’s National Medical Center and colleagues in Tokyo publish results, video of first successful trial in dogs with Duchenne muscular dystrophy

Genetic researchers at Children’s National Medical Center and the National Center of Neurology and Psychiatry in Tokyo published the results of the first successful application of “multiple exon-skipping” to curb the devastating effects of Duchenne muscular dystrophy in an animal larger than a mouse. Multiple exon-skipping employs multiple DNA-like molecules as a “DNA band-aids” to skip over the parts of the mutated gene that block the effective creation of proteins.

The study, conducted in Japan and the United States, published this month in the peer-reviewed journal of the American Neurological Association, the Annals of Neurology, treated dogs with naturally occurring canine X-linked muscular dystrophy, a disease which is genetically homologous to the Duchenne muscular dystrophy that strikes 1 of every 3,500 boys born in the United States and worldwide each year.

Duchenne muscular dystrophy, one of the most common lethal genetic disorders, is an X-linked genetic mutation that causes an inability of the body’s cells to effectively create dystrophin—which builds muscle tissue. “Exon-skipping” employs synthetic DNA-like molecules called antisense as a DNA bandaid to skip over the parts of the gene that block the effective creation of dystrophin. Because the gene’s mutation could affect any of its 79 exons and sometimes more than one single exon at a time, scientists employed a “cocktail” of antisense called morpholinos to extend the range of this application. By skipping more than a single exon, this so-called DNA band-aid becomes applicable to between 80 and 90 percent of Duchenne muscular dystrophy patients, including the mutation found in dogs. “This trial makes the much-talked about promise of exon-skipping as a systemic treatment for Duchenne muscular dystrophy in humans a real possibility in the near term,” said Toshifumi Yokota, PhD, lead author of the study. “Of course this success has also introduced even more avenues for investigation, but these findings finally overcome a significant hurdle to our progress—we’ve solved the riddle of an effective system-wide delivery to muscle tissue, and seen promising results.”

A new state-of-the-art facility at the National Center of Neurology and Psychiatry in Japan was utilized to carry out the research.

“This study delivers the proof-of-concept that systemic anti-sense therapy can be done in a large organism, in Duchenne muscular dystrophy or any disease”, says Eric Hoffman, PhD, a senior author of the study and director of the Center for Genetic Medicine at Children’s National Medical Center.

“Systemic treatment of the majority of Duchenne dystrophy will require multiple sequences to be delivered in the blood, and this study also is the first proof-of-principle of multiple exon-skipping in any organism,” Shin’ichi Takeda, MD, another senior author, said. “In order to realize that promise in human trials, it also will be important to re-evaluate current measures of toxicity, efficacy, and marketing that ensure both safety for the patient, as well as rapid development and distribution of life-saving drugs.

The authors do note that significant steps still remain. Successful systemic treatment with morpholinos requires large doses of the antisense molecules—and the technology is costly and difficult to obtain. Additionally, treatment in this study showed diminished success at curbing muscle deterioration of the heart, meaning that a more effective and specific delivery system is needed to rescue the organ’s delicate tissue in Duchenne muscular dystrophy patients. However, these early successes do show much promise for the oft-discussed exon-skipping method as an effective treatment for Duchenne muscular dystrophy and some other genetic disorders. The post-treatment and non-treatment videos of the study are available on the Annals of Neurology website.

The study was funded by the Foundation to Eradicate Duchenne, the U.S. Department of Defense CDMRP Program, the Jain Foundation, the Crystal Ball Event of Hampton Roads and the Muscular Dystrophy Association USA, the National Center for Medical Rehabilitation Research, a collaborative grant from the U.S. National Institutes of Health Wellstone Muscular Dystrophy Research Centers, and several Grants-in-Aid from the Ministry of Health, Labour, and Welfare of Japan.

Contacts
Children’s National: Jennifer Leischer/Emily Dammeyer, 202-476-4500, jleische@cnmc.org

National Center of Neurology and Psychiatry of Tokyo: Atsushi Sakuma/Shin’ichi Takeda, +81-42-341-2711

Jennifer Leischer | EurekAlert!
Further information:
http://www.cnmc.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>