Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Treatment for Muscular Dystrophy in Sight

17.03.2009
Scientists Harness Exon-Skipping in Large Animal to Successfully Treat Duchenne Muscular Dystrophy

Researchers from Children’s National Medical Center and colleagues in Tokyo publish results, video of first successful trial in dogs with Duchenne muscular dystrophy

Genetic researchers at Children’s National Medical Center and the National Center of Neurology and Psychiatry in Tokyo published the results of the first successful application of “multiple exon-skipping” to curb the devastating effects of Duchenne muscular dystrophy in an animal larger than a mouse. Multiple exon-skipping employs multiple DNA-like molecules as a “DNA band-aids” to skip over the parts of the mutated gene that block the effective creation of proteins.

The study, conducted in Japan and the United States, published this month in the peer-reviewed journal of the American Neurological Association, the Annals of Neurology, treated dogs with naturally occurring canine X-linked muscular dystrophy, a disease which is genetically homologous to the Duchenne muscular dystrophy that strikes 1 of every 3,500 boys born in the United States and worldwide each year.

Duchenne muscular dystrophy, one of the most common lethal genetic disorders, is an X-linked genetic mutation that causes an inability of the body’s cells to effectively create dystrophin—which builds muscle tissue. “Exon-skipping” employs synthetic DNA-like molecules called antisense as a DNA bandaid to skip over the parts of the gene that block the effective creation of dystrophin. Because the gene’s mutation could affect any of its 79 exons and sometimes more than one single exon at a time, scientists employed a “cocktail” of antisense called morpholinos to extend the range of this application. By skipping more than a single exon, this so-called DNA band-aid becomes applicable to between 80 and 90 percent of Duchenne muscular dystrophy patients, including the mutation found in dogs. “This trial makes the much-talked about promise of exon-skipping as a systemic treatment for Duchenne muscular dystrophy in humans a real possibility in the near term,” said Toshifumi Yokota, PhD, lead author of the study. “Of course this success has also introduced even more avenues for investigation, but these findings finally overcome a significant hurdle to our progress—we’ve solved the riddle of an effective system-wide delivery to muscle tissue, and seen promising results.”

A new state-of-the-art facility at the National Center of Neurology and Psychiatry in Japan was utilized to carry out the research.

“This study delivers the proof-of-concept that systemic anti-sense therapy can be done in a large organism, in Duchenne muscular dystrophy or any disease”, says Eric Hoffman, PhD, a senior author of the study and director of the Center for Genetic Medicine at Children’s National Medical Center.

“Systemic treatment of the majority of Duchenne dystrophy will require multiple sequences to be delivered in the blood, and this study also is the first proof-of-principle of multiple exon-skipping in any organism,” Shin’ichi Takeda, MD, another senior author, said. “In order to realize that promise in human trials, it also will be important to re-evaluate current measures of toxicity, efficacy, and marketing that ensure both safety for the patient, as well as rapid development and distribution of life-saving drugs.

The authors do note that significant steps still remain. Successful systemic treatment with morpholinos requires large doses of the antisense molecules—and the technology is costly and difficult to obtain. Additionally, treatment in this study showed diminished success at curbing muscle deterioration of the heart, meaning that a more effective and specific delivery system is needed to rescue the organ’s delicate tissue in Duchenne muscular dystrophy patients. However, these early successes do show much promise for the oft-discussed exon-skipping method as an effective treatment for Duchenne muscular dystrophy and some other genetic disorders. The post-treatment and non-treatment videos of the study are available on the Annals of Neurology website.

The study was funded by the Foundation to Eradicate Duchenne, the U.S. Department of Defense CDMRP Program, the Jain Foundation, the Crystal Ball Event of Hampton Roads and the Muscular Dystrophy Association USA, the National Center for Medical Rehabilitation Research, a collaborative grant from the U.S. National Institutes of Health Wellstone Muscular Dystrophy Research Centers, and several Grants-in-Aid from the Ministry of Health, Labour, and Welfare of Japan.

Contacts
Children’s National: Jennifer Leischer/Emily Dammeyer, 202-476-4500, jleische@cnmc.org

National Center of Neurology and Psychiatry of Tokyo: Atsushi Sakuma/Shin’ichi Takeda, +81-42-341-2711

Jennifer Leischer | EurekAlert!
Further information:
http://www.cnmc.org

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>