Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treating cardiovascular disorders -- and more -- with the flips of a switch

27.04.2018

Using light to switch calcium ions on and off may have implications for regenerative medicine

You've heard of "nature versus nurture," and philosophers argue about which is more important. But how does this work on the cellular level?


Cardiovascular disease treatment.

Credit: Yubin Zhou, Texas A&M University Health Science Center

Although genes stay the same throughout the lifespan, genetic code isn't necessarily a person's destiny. In fact, genes can be switched on and off to regulate a number of activities within cells. The body does this naturally in response to internal needs or changes in the external environment, and now scientists are able to switch these processes on and off in the lab.

In other words, researchers have created tools that would enable real-time activation of target genes in specific locations in the genome. This technology may help scientists to illuminate the gene function during different biological processes and hopefully be useful in regenerative medicine. Researchers at Texas A&M are creating a system to do this using two common elements: calcium and light.

Calcium--capable of far more than building strong bones--plays an important role in this system, as its signals regulate a number of activities within the cell, from growth and metabolism to homeostasis.

Turning on the flow of calcium ions

Yubin Zhou, PhD, associate professor at the Texas A&M Institute of Biosciences and Technology, leads the study developing what he calls the CaRROT system (for calcium-responsive transcriptional reprogramming tool). This system can control the transcription of genes within the body with high precision--in other words, it can dictate how, when and where genes create proteins that perform various cellular functions.

CaRROT uses a simple pulse of light or chemicals that can induce the flow of calcium ions into cells. The researchers described their technique in a recent article published in the journal ACS Synthetic Biology. "This technology should allow scientists to turn on or off a diverse array of genes at any location by simply switching the light or adding or withdrawing activating compounds," Zhou said.

The researchers designed CaRROT to hijack the calcium signals generated by light (with Opto-CRAC, another technology Zhou and his team developed) to deliver the genome-engineering tool derived from the CRISPR/Cas9 system to turn on genes. "When the light is switched on, the gates controlling calcium ions open to allow the flow of calcium from the external space into the cytoplasm of the cell," said Nhung Nguyen, a graduate student in Zhou's lab who led this work. "This process ultimately turns on the expression of specific genes." The turning on of gene expression then leads to changes in the function of the cell.

"We have screened dozens of engineered proteins and undergone numerous rounds of optimization to make the CaRROT system strictly responsive to light," added Lian He, PhD, a graduate student in Zhou's lab and a co-first author of the study. To evaluate how effective CaRROT really is in mammalian cells, the team will test it on genes that control the differentiation of neuron and skeletal muscle. They hope that they can use CaRROT in regenerative medicine to drive the precise differentiation of stem cells into whatever type of organ is required, just by illuminating the cells with light.

"The improvement of light penetration in deep tissue gives us the optimism that we could use CaRROT to reprogram cells in damaged organs," said Yun Huang, PhD, a collaborative senior author of the study. "It is possible that one day, by just exposing the tissues to light, we can heal the wound or accelerate the regeneration of injured tissues by photo-tuning coordinated gene expression."

Turning calcium influx off

In a second study recently published in the journal Angewandte Chemie as a cover story, Zhou and his team invented a new optogenetic tool that can do the opposite trick. With light shining upon cells in the 'excitable' tissues such as the nervous and cardiovascular systems, calcium influx through gateways on the membrane of the cell, called voltage-gated calcium channels, can be turned off. These channels, which constitute the major route of calcium entry into the cell, regulate a series of physiological processes. Because their dysfunction is involved in many diseases, they are considered an important therapeutic target for cardiovascular and neuropsychiatric disorders.

Traditional calcium-channel blockers approved by the United States Food and Drug Administration have been widely used to treat cardiovascular disorders including high blood pressure, arrhythmia and coronary artery disease. However, these drugs tend to cause side effects--including headache, edema, dangerously low blood pressure and palpitations--due to their cytotoxicity and off-target effects. "Because of these side effects, generating new interventional approaches to complement the traditional calcium-channel blockers is much needed in the clinic," Zhou said. "Our new optogenetic tool provides a non-conventional method to interrogate physiological and pathophysiological processes medicated by these voltage-gated calcium channels."

Zhou and his collaborators combined genetic strategies with optical techniques to engineer a novel class of genetically encoded inhibitors for these voltage-gated calcium channels. "After tremendous efforts of optimization, we developed an ideal photoswitchable inhibitor, which we're calling optoRGK. OptoRGK exhibited excellent light-inducible inhibition of calcium ion entry in excitable cells," said Guolin Ma, PhD, an assistant project scientist in Zhou's lab, who spearheaded the project.

The team tested this tool in cardiac muscle cells, which showed rhythmic oscillations of calcium in the dark that matched the heart beating rhythm. "However, upon blue light illumination, the rhythmic oscillations can be substantially reduced or even terminated," Zhou said. "Notably, this process is totally reversible after removal of the light source."

With this method, researchers can regulate the activity of excitable cells in the nervous and cardiovascular systems. "Complementary to the photoactivatable Opto-CRAC system, the optoRGK toolkit provides a unique opportunity to switch off calcium signals in excitable cells," said Youjun Wang, PhD, a collaborator of this study from Beijing Normal University.

"Our novel optogenetic tools can be conveniently applied to control a wide range of physiological processes mediated by voltage-gated calcium channels in multiple biological systems," Zhou added. "While traditional voltage-gated calcium channel blockers lack reversibility, selectivity and tissue-specificity, optoRGK opens exciting opportunities to intervene in related physiological processes with unprecedented precision. We hope that these kinds of studies will eventually lead to new generation of optogenetic devices for curing cancer, cardiovascular and neurological diseases."

Media Contact

Tamim Choudhury
tchoudhury@tamhsc.edu
979-436-0619

http://www.tamu.edu 

Tamim Choudhury | EurekAlert!
Further information:
https://vitalrecord.tamhsc.edu/treating-cardiovascular-disorders-and-more-with-the-flip-of-a-switch/

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>