Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplanted neurons develop disease-like pathology in Huntington's patients

21.07.2009
The results of a recent study published in PNAS question the long-term effects of transplanted cells in the brains of patients suffering from Huntington's disease.

This study, conducted jointly by Dr. Francesca Cicchetti of Université Laval in Quebec, Canada, Dr. Thomas B. Freeman of the University of South Florida, USA, and colleagues provides the first demonstration that transplanted cells fail to offer a long-term replacement for degenerating neurons in patients with Huntington's disease.

Huntington's disease is a neurodegenerative disease of genetic origin that targets a particular type of neuron. The loss of these neurons is responsible for the appearance of involuntary movements as well as cognitive and psychiatric impairments. Over a decade ago, Dr. Thomas Freeman of the University of South Florida initiated a clinical trial of neural cell transplantation in Huntington's diseased patients in an attempt to alleviate the dreadful symptoms that characterize this disease.

Some patients demonstrated some mild, transient clinical benefits that lasted for about 2 years. However, the loss of functional recovery after this indicated that graft survival and functionality may be jeopardized long- term.

This post-mortem study of 3 cases is the first demonstration that 1) graft survival is indeed attenuated long-term, 2) grafts undergo degeneration that resembles the pathology observed in Huntington's disease, and 3) the brain's inflammatory response could contribute to the compromised survival of grafted cells. The authors also demonstrated that cortical neurons that develop Huntington's disease synapse on the grafts and may cause neurotoxicity to healthy cells, inducing grafted neuronal cell death.

Despite the excitement regarding cell transplantation therapy utilizing embryonic or stem cells, these results raise concerns for the therapeutic potential of transplantation as a treatment option for Huntington's disease. However, these observations suggest new potential mechanisms involved in the development of the disease. A more in-depth investigation could lead to the development of novel therapeutic strategies. The control of patient immune and inflammatory responses holds therapeutic potential, and Cicchetti et al. are continuing their research in that direction.

Dr. Francesca Cicchetti is a professor in the Department of Psychiatry/Neuroscience at Université Laval and a researcher in neurobiology at le Centre hospitalier universitaire de Québec. She is directing a research laboratory focused on understanding neuronal degeneration and developing therapeutic strategies for neurodegenerative diseases.

Dr. Thomas B. Freeman is a neurosurgeon, director of clinical research, and medical director of the Center of Excellence for Aging and Brain Repair at the University of South Florida.

This work includes the scientific contribution of the following authors:
Samuel Saporta (University of South Florida)
Robert Hauser (Parkinson's Disease and Movement Disorders Center, National Parkinson's Foundation Center of Excellence, University of South Florida)
Martin Parent (Groupe de recherche sur le système nerveux central [GRSNC])
Martine Saint-Pierre (Centre de Recherche du CHUL [CHUQ])
Paul Sanberg (University of South Florida)
Xiao Li (Emory University School of Medicine)
John Parker (University of Louisville Health Sciences Center)
Yaping Chu (Rush University Medical Center)
Elliot Mufson (Rush University Medical Center)
Jeffrey Kordower (Rush University Medical Center)
Information:
Francesca Cicchetti
Centre de Recherche du CHUL (CHUQ), Unité de Neurosciences,Canada
Université Laval
Tel.: 418-656-4141, ext. 48853
Tel.:418-262-9122
Francesca.Cicchetti@crchul.ulaval.ca
Thomas B. Freeman,
University of South Florida, USA
Tel.: 813-259-0889
Tel.: 813-389-0679 tfreeman@health.usf.edu

Sarah Sanchez | EurekAlert!
Further information:
http://www.ulaval.ca

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>