Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny exports signal big shifts in cancer tissue, researchers find

26.01.2017

Microscopic shifts in metabolism and increases in tiny transport vesicles out of tumor cells preface larger changes to the tumor environment and could prepare the way for cancerous cells to spread and metastasize, University of Illinois researchers report. They saw cancer-causing biological events at both the molecular and tissue scales as they happened, imaging the cells with precise wavelengths of light -- no chemicals, dyes or genetic manipulation needed.

Performed with rat and human cancer tissue, the study looked at five changes seen in a tumor's environment as it develops, grows and spreads. There are techniques to study each of these separately, but all involve disturbing the cellular environment with chemical dyes, fluorescent probes or genetic manipulation, for example. The Illinois group used finely tuned wavelengths of light to see the structural and molecular makeup of tissue in its natural state. The researchers isolate the signals from specific cancer processes by focusing on distinct wavelengths and combine the images to see how the processes interact.


A constellation of vesicles, tiny cellular transport packages seen here as blue dots, are released by cancer cells into the surrounding tissue. Illinois researchers found that these vesicles, coupled with molecular changes in metabolism, can signal big changes in the tissue around tumors.

Image courtesy of Stephen Boppart and Haohua Tu

"We're starting to connect the dots here. This is the first time all of these pieces have been looked at together. No one's been able to visualize the tissue this way and see the changes dynamically," said Dr. Stephen Boppart, the leader of the study, published in the journal Science Advances. Boppart is an Illinois professor of electrical and computer engineering and of bioengineering, and also is a medical doctor.

The researchers were particularly interested in vesicles, the tiny packages that cells use to transport things in and out of the cell. Cancer cells pump out vesicles at an increased rate. Many cancer researchers believe this to be a response to the stress from molecular changes in the tissue.

Because the Illinois imaging technique doesn't disturb the cells and thus can watch them over time, the researchers saw that a wave of vesicles came before the larger tissue-scale changes like new blood vessels or recruitment of neighboring cells. Together with changes in metabolism, increased vesicle production could be a cause of the larger-scale changes in cancer tissue rather than an effect, the researchers say.

"This paper is important because it connects the microscopic scale - the molecular and vesicle scale -- with the larger-scale events in the tissue," said Haohua Tu, a research scientist at the Beckman Institute for Advanced Science and Technology at Illinois and the first author of the paper. "Also, this is the first time we've compared changes in metabolism and vesicle production, and we found that they are linked. Both are microscopic events, but their concurrence leads to a lot of large-scale changes associated with tumor progression. The conclusion is that the combination of these two signals early cancer development and should be a focus of cancer therapy, rather than only focusing on larger-scale events later."

The study also provides evidence that vesicles from cancer cells may play a role in spreading the cancer to other tissues in addition to changing a tumor's local environment, the researchers said.

"Often, when there is a tumor in one tissue, cells elsewhere have undergone changes because of that tumor," Boppart said. "Are all these changes happening because there was some sort of environmental carcinogen that caused tumors at different points? Or did the tumor give off vesicles that changed the microenvironment to prepare it for those later cells that metastasize?"

Boppart hopes that the findings on vesicles and the role they play in signaling cancer progression will open new avenues of exploration for cancer detection, progression and treatment. The researchers have developed a portable version of the imaging device for use in operating rooms and biopsy suites, and are now testing whether it can identify increased vesicle production in cancer patients and assess how aggressive a tumor is. They also are conducting further studies into the vesicles to see what they contain.

"We also know from other studies that these vesicles carry a lot of information about where they came from and where they're going," Boppart said. "Imaging is great, but you have to know where to look. There's no way we can look at the whole body on the cellular level. But if we can take a drop of blood, scan it for cancer-related vesicles and know where they came from, then we know where to look for the tumor."

###

The National Institutes of Health supported this work.

Editor's notes: To contact Stephen Boppart, call 217 333-8598-; email: boppart@illinois.edu.

The paper "Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the tumor microenvironment" is available online.

Media Contact

Liz Ahlberg Touchstone
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg Touchstone | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Magnesium deprivation stops pathogen growth
22.11.2019 | Universität Basel

nachricht Protection for pacemakers
22.11.2019 | ETH Zurich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New antenna tech to equip ceramic coatings with heat radiation control

22.11.2019 | Materials Sciences

Pollinator friendliness can extend beyond early spring

22.11.2019 | Life Sciences

Wound healing in mucous tissues could ward off AIDS

22.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>