Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny exports signal big shifts in cancer tissue, researchers find

26.01.2017

Microscopic shifts in metabolism and increases in tiny transport vesicles out of tumor cells preface larger changes to the tumor environment and could prepare the way for cancerous cells to spread and metastasize, University of Illinois researchers report. They saw cancer-causing biological events at both the molecular and tissue scales as they happened, imaging the cells with precise wavelengths of light -- no chemicals, dyes or genetic manipulation needed.

Performed with rat and human cancer tissue, the study looked at five changes seen in a tumor's environment as it develops, grows and spreads. There are techniques to study each of these separately, but all involve disturbing the cellular environment with chemical dyes, fluorescent probes or genetic manipulation, for example. The Illinois group used finely tuned wavelengths of light to see the structural and molecular makeup of tissue in its natural state. The researchers isolate the signals from specific cancer processes by focusing on distinct wavelengths and combine the images to see how the processes interact.


A constellation of vesicles, tiny cellular transport packages seen here as blue dots, are released by cancer cells into the surrounding tissue. Illinois researchers found that these vesicles, coupled with molecular changes in metabolism, can signal big changes in the tissue around tumors.

Image courtesy of Stephen Boppart and Haohua Tu

"We're starting to connect the dots here. This is the first time all of these pieces have been looked at together. No one's been able to visualize the tissue this way and see the changes dynamically," said Dr. Stephen Boppart, the leader of the study, published in the journal Science Advances. Boppart is an Illinois professor of electrical and computer engineering and of bioengineering, and also is a medical doctor.

The researchers were particularly interested in vesicles, the tiny packages that cells use to transport things in and out of the cell. Cancer cells pump out vesicles at an increased rate. Many cancer researchers believe this to be a response to the stress from molecular changes in the tissue.

Because the Illinois imaging technique doesn't disturb the cells and thus can watch them over time, the researchers saw that a wave of vesicles came before the larger tissue-scale changes like new blood vessels or recruitment of neighboring cells. Together with changes in metabolism, increased vesicle production could be a cause of the larger-scale changes in cancer tissue rather than an effect, the researchers say.

"This paper is important because it connects the microscopic scale - the molecular and vesicle scale -- with the larger-scale events in the tissue," said Haohua Tu, a research scientist at the Beckman Institute for Advanced Science and Technology at Illinois and the first author of the paper. "Also, this is the first time we've compared changes in metabolism and vesicle production, and we found that they are linked. Both are microscopic events, but their concurrence leads to a lot of large-scale changes associated with tumor progression. The conclusion is that the combination of these two signals early cancer development and should be a focus of cancer therapy, rather than only focusing on larger-scale events later."

The study also provides evidence that vesicles from cancer cells may play a role in spreading the cancer to other tissues in addition to changing a tumor's local environment, the researchers said.

"Often, when there is a tumor in one tissue, cells elsewhere have undergone changes because of that tumor," Boppart said. "Are all these changes happening because there was some sort of environmental carcinogen that caused tumors at different points? Or did the tumor give off vesicles that changed the microenvironment to prepare it for those later cells that metastasize?"

Boppart hopes that the findings on vesicles and the role they play in signaling cancer progression will open new avenues of exploration for cancer detection, progression and treatment. The researchers have developed a portable version of the imaging device for use in operating rooms and biopsy suites, and are now testing whether it can identify increased vesicle production in cancer patients and assess how aggressive a tumor is. They also are conducting further studies into the vesicles to see what they contain.

"We also know from other studies that these vesicles carry a lot of information about where they came from and where they're going," Boppart said. "Imaging is great, but you have to know where to look. There's no way we can look at the whole body on the cellular level. But if we can take a drop of blood, scan it for cancer-related vesicles and know where they came from, then we know where to look for the tumor."

###

The National Institutes of Health supported this work.

Editor's notes: To contact Stephen Boppart, call 217 333-8598-; email: boppart@illinois.edu.

The paper "Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the tumor microenvironment" is available online.

Media Contact

Liz Ahlberg Touchstone
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg Touchstone | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>