Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermography confirms improvement of wound healing by water-filtered infrared-A (wIRA)

22.10.2008
Water-filtered infrared-A (wIRA) as a special form of heat radiation can enable and improve wound healing in non-healing chronic venous stasis ulcers. wIRA can considerably alleviate the pain and diminish an elevated wound exudation and inflammation. wIRA increases temperature, oxygen partial pressure, and perfusion in the tissue.

In an original paper, just published in the interdisciplinary medical e-Journal "GMS German Medical Science" of the Association of the Scientific Medical Societies in Germany (AWMF), the beneficial effects of wIRA in chronic venous stasis ulcers could be demonstrated by clinical assessments and as well by extensive thermographic investigations.

It is estimated that at least 1% of the population in industrialised countries will suffer from leg ulcer at some time. A prospective study of the University Tromsø/Norway and the Hospital in Hillerød/Denmark of 10 patients with non-healing chronic venous stasis ulcers of the lower legs, in which other therapies were not successful, resulted under therapy with wIRA in a complete or almost complete wound healing (96-100% reduction of wound area) in 7 of 10 patients and a reduction of the ulcer size in another 2 of 10 patients. The uncovered wounds of the patients were irradiated two to five times per week for 30 minutes. Treatment continued for a period of up to 2 months (typically until closure or nearly closure of the ulcer was achieved).

An example of a successful course of therapy with wIRA irradiation is demonstrated in Figure 1 with normal view, thermographic image and temperature profile across the ulcer, in each case before therapy and after completion of therapy.

Among the 6 patients without concomitant problems (peripheral occlusive arterial disease, smoking or lacking compression garment therapy) a complete or almost complete wound healing was achieved without any exception. Even in the 4 patients with concomitant problems clear reductions of wound area were reached in 4 of the 5 ulcers including one complete wound closure. In one patient a randomized controlled side comparison was possible (therapy of one leg with an ulcer with wIRA and visible light, therapy of the other leg with another ulcer with a control group radiator, emitting only visible light without wIRA) and revealed marked differences in favour of wIRA.

In addition the study showed under therapy with wIRA a clear reduction of pain and required pain medication (e.g. from 15 to 0 pain tablets per day) and a normalization of the thermographic image. Prior to the start of therapy typically the rim of the ulcer was hyperthermic, accompanied with a relative hypothermic ulcer base, partly associated with up to 4.5°C temperature gradiance. At the end of the course of therapy the temperature differences were mostly balanced. All assessments using visual analogue scales (VAS: pain sensation of the patient in the wound area, overall rating of the effect of the irradiation by the patient and by the clinical investigator, overall assessment of the feeling of the patient of the wound area, overall evaluation of the wound healing process by the clinical investigator, overall assessment of the cosmetic appearance by the patient and by the clinical investigator) improved remarkably during the period of irradiation therapy and commensurated with the improvement of the quality of life.

Wound healing and infection defence depend decisively on a sufficient supply with energy and oxygen. The central portion of chronic wounds is often clearly hypoxic and relatively hypothermic - as thermographically shown in the study -, representing a deficient energy supply of the tissue, which impedes wound healing or even makes it impossible. wIRA produces a therapeutically usable field of heat in the tissue and increases tissue temperature, tissue oxygen partial pressure, and tissue perfusion. These three factors are vital for a sufficient tissue supply with energy and oxygen. The good clinical effect of wIRA on wounds and wound infections can be explained by the improvement of both the energy supply per time (increase of metabolic rate) and the oxygen supply. In addition wIRA has non-thermal and non-thermic effects, which are based on putting direct stimuli on cells and cellular structures.

Publication:

Mercer JB, Nielsen SP, Hoffmann G. Improvement of wound healing by water-filtered infrared-A (wIRA) in patients with chronic venous stasis ulcers of the lower legs including evaluation using infrared thermography. GMS Ger Med Sci. 2008;6:Doc11.
Online available from: http://www.egms.de/pdf/gms/2008-6/000056.pdf (PDF) and http://www.egms.de/en/gms/2008-6/000056.shtml (HTML).

The freely available publication includes 10 patient appendices and 2 video sequences.

Wolfgang Müller | idw
Further information:
http://awmf.org
http://www.egms.de/en/gms/2008-6/000056.shtml
http://www.egms.de/pdf/gms/2008-6/000056.pdf

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>