Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapeutic target identified to decrease triglycerides and increase 'good' cholesterol

21.10.2011
Researchers provide insight on cardiovascular disease and metabolic syndrome prevention

Researchers at NYU Langone Medical Center today announce findings published in the October 20 issue of Nature that show for the first time the inhibition of both microRNA-33a and microRNA-33b (miR-33a/b) with chemically modified anti-miR oligonucleotides markedly suppress triglyceride levels and cause a sustained increase in high density lipoprotein cholesterol (HDL-C) "good" cholesterol.

"The discovery of microRNAs in the last decade has opened new insights for up new avenues for the development of therapies targeted at these potent regulators of gene pathways," said lead author Kathryn Moore, PhD, associate professor in the Department of Medicine, The Leon H. Charney Division of Cardiology and The Marc and Ruti Bell Vascular Biology and Disease Program at NYU Langone Medical Center. "The current study is the first to show that inhibition of miR-33a, as well as miR-33b which is only found in larger mammals can suppress plasma triglyceride levels and increase circulating levels of HDL-C. This study highlights the benefits of modulating miR-33a/b and its downstream metabolic pathways for the treatment of conditions that increase cardiovascular disease risks, such as dyslipidemias and metabolic syndrome."

Metabolic syndrome is a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes. Cholesterol is a growing public concern worldwide characterized by an increase in triglycerides, decrease in plasma HDL-C, obesity and resistance to insulin that can lead to both cardiovascular disease and diabetes.

Recent studies have indicated miR-33a/b regulate genes involved in cholesterol and fatty acid metabolism pathways. miR-33a/b strongly represses the cholesterol transporter ABCA1, resulting in decreased generation of HDL-C and reverse cholesterol transport. In addition, miR-33a/b also inhibit key genes involved in fatty acid metabolism resulting in the accumulation of triglycerides. The ability to inhibit miR-33a/b to reverse these events provides a novel therapeutic approach to correct dyslipidemia and metabolic syndrome.

"This study represents a significant advance from our proof-of-concept studies in mice showing that anti-miR-33 can both raise HDL and improve existing atherosclerotic vascular disease," said Katey Rayner, PhD in the Department of Medicine at NYU Langone Medical Center and co-author of the study. "These exciting results now bring the use of miR-33 inhibitors one step closer to the clinic."

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history.

Christopher Rucas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>