Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Therapeutic approach for patients with severe depression

04.04.2012
Brain pacemakers have a long-term effect in patients with the most severe depression. This has now been proven by scientists from the Bonn University Medical Center.
Eleven patients took part in the study over a period of two to five years. A lasting reduction in symptoms of more than 50% was seen in nearly half of the subjects. A new perspective is thus opened for people with the most severe depression who do not respond to any other therapy. The results are now being presented in the current edition of the journal “Neuropsychopharmacology.”

People with severe depression are constantly despondent, lacking in drive, withdrawn and no longer feel joy. Most suffer from anxiety and the desire to take their own life. Approximately one out of every five people in Germany suffers from depression in the course of his/her life – sometimes resulting in suicide. People with depression are frequently treated with psychotherapy and medication. “However, many patients are not helped by any therapy,” says Prof. Dr. Thomas E. Schläpfer from the Bonn University Medical Center for Psychiatry and Psychotherapy. “Many spend more than ten years in bed – not because they are tired, but because they have no drive at all and they are unable to get up.”

One possible alternative is “deep brain stimulation,” in which electrodes are implanted in the patient’s brain. The target point is the nucleus accumbens - an area of the brain known as the gratification center. There, a weak electrical current stimulates the nerve cells. Brain pacemakers of this type are often used today by neurosurgeons and neurologists to treat ongoing muscle tremors in Parkinson’s disease.
A 2009 study proved an antidepressive effect

In 2009, the Bonn scientists were able to establish that brain pacemakers also demonstrate an effect in the most severely depressed patients. Ten subjects who underwent implantation of electrodes in the nucleus accumbens all experienced relief of symptoms. Half of the subjects had a particularly noticeable response to the stimulation by the electrodes.

“In the current study, we investigated whether these effects last over the long term or whether the effects of the deep brain stimulation gradually weaken in patients,” says Prof. Schläpfer. There are always relapses in the case of psychotherapy or drug treatment. Many patients had already undergone up to 60 treatments with psychotherapy, medications and electroconvulsive therapy, to no avail. “By contrast, in the case of deep brain stimulation, the clinical improvement continues steadily for many years.” The scientists observed a total of eleven patients over a period of two to five years. “Those who initially responded to the deep brain stimulation are still responding to it even today,” says the Bonn psychiatrist, summarizing the results. During the study, one patient committed suicide. “That is very unfortunate,” says Prof. Schläpfer. “However, this cannot always be prevented in the case of patients with very severe depression.“

The current study shows that the positive effects last for years

Even after a short amount of time, the study participants demonstrated an improvement in symptoms. “The intensity of the anxiety symptoms decreased and the subjects’ drive improved,” reports the psychiatrist. “After many years of illness, some were even able to work again.“ With the current publication, the scientists have now demonstrated that the positive effects do not decrease over a longer period of time. “An improvement in symptoms was recorded for all subjects; for nearly half of the subjects, the extent of the symptoms was more than 50 percent below that of the baseline, even years after the start of treatment,” says Prof. Schläpfer. “There were no serious adverse effects of the therapy recorded.”

The long-term effect is now confirmed with the current study. How precisely the electrical stimulation is able to alter the function of the nucleus accumbens is not yet known. “Research is still needed in this area,” says Prof. Schläpfer. “Using imaging techniques, it was proven that the electrodes actually activate the nucleus accumbens.” The deep brain stimulation method may signify hope for people who suffer from the most severe forms of depressive diseases. “However, it will still take quite a bit of time before this therapeutic method becomes a part of standard clinical practice,” says the Bonn scientist.
Publication: Long-term Effects of Nucleus Accumbens Deep Brain Stimulation in Treatment Resistant Depression – Evidence for Sustained Efficacy, Neuropsychopharmacology, DOI: 10.1038/npp.2012.44

Contact information:

Prof. Dr. med. Thomas E. Schläpfer
Assistant Director of the Clinic for Psychiatry and Psychotherapy of the Bonn University Medical Center
Tel. 0049-228-28715715
E-Mail: schlaepf@jhmi.edu

Johannes Seiler | idw
Further information:
http://www3.uni-bonn.de/Pressemitteilungen/085-2012
http://www.uni-bonn.tv/podcasts/20120328_BE_Hirnstimulation.mp4/view

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

A genetic map for maize

24.02.2020 | Agricultural and Forestry Science

Where is the greatest risk to our mineral resource supplies?

24.02.2020 | Earth Sciences

Computer vision is used for boosting pest control efficacy via sterile insect technique

24.02.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>