Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The radiation therapy of the future adjusts itself to the patient

10.02.2015

Together with physicians, other research groups, and industry partners, Fraunhofer MEVIS is developing software to optimize radiation therapy. The fifth clinical workshop to evaluate this software took place in Bremen on February 5 and 6.

Radiation therapy for cancer therapy usually lasts for several weeks. During this time, the situation of the patient changes often: bodyweight decreases, causing the tumor to shrink or change shape. As a result, the distribution of the radiation dose set at the beginning of the therapy is no longer optimal. In the worst case, the radiation can no longer fully hit the tumor, causing part of the radiation to reach and damage healthy tissue.


In the clinical workshops, scientists from Fraunhofer MEVIS are working together with physicians on the workflow and user experience of the joint radiation therapy software.

Fraunhofer MEVIS

To avoid such a scenario, doctors have to adjust the direction and dose of the radiation according to current conditions. Until now, this replanning has been a costly and time-consuming procedure. The software developed in the BMBF-funded (Federal Ministry of Education and Research) SPARTA project aims at accelerating this process, thus offering cheaper therapy progress.

Fraunhofer Institute for Medical Image Computing MEVIS has contributed fast and accurate method of transferring the original planning situation to the current patient condition. To make the program as practical as possible, the experts from SPARTA work closely with doctors from renowned cancer clinics.

At the beginning of every radiation therapy, doctors develop a detailed treatment plan based on CT imagery. This plan indicates the body areas that must be irradiated, as well as how often and with what dosage they must be treated. The goal is to completely destroy the tumor while sparing nearby tissue as much as possible. However, this cannot be achieved with a single radiation session. Patients might undergo daily therapy for a month to successfully fight the cancer.

“To ensure that the tumor is targeted as planned, doctors take routine control images of the patient,” explains MEVIS researcher Stefan Wirtz. “That way, they can also recognize whether the patient is lying accurately in the device.” Likewise, these control images help determine whether the tumor has shifted in the body due to a patient´s weight loss over the course of therapy. In such cases, healthy body areas can be accidentally damaged by moving into the radiation path. “When treating tumors in the oral and pharyngeal cavity, the salivary gland sometimes shifts into the radiation area and can become damaged,” says Wirtz’ colleague Stefan Kraß.

To avoid this and to adjust the radiation optimally, doctors must compare the original planning images with the most recent control images. “Often, the doctor must view old and new images and compare them mentally,” Stefan Wirtz explains. “However, our software can align both of them in a single image and transfer the contours of the radiation area.” As a result, doctors can quickly recognize whether the original contours still apply to the current situation. If not, the contours can easily be adjusted with the software tools. “Until now, replanning radiation therapy could take several hours,” says Stefan Kraß. “Our software can accelerate the process considerably.”

To make the software user-friendly, MEVIS experts exchange ideas with radiation therapists several times a year and discuss progress during joint workshops. Is the program easy to operate? Do the algorithms deliver the proper results? Are the software tools as practical as the clinicians desire? “The doctors participate regularly,” emphasizes Wirtz. “This assures that our software will satisfy the demands of the clinical routine.”

One of SPARTA´s clinical project partners, the Ludwig Maximilian University (LMU) in Munich, has already implemented the program for research purposes to evaluate its benefits. “In the current version, the quick contour transfer generates very good re-contouring suggestions. The software will surely find its application in adaptive head and neck radiation therapy,” says LMU doctor Reinoud Nijhuis.

“When the project ends in March 2016, we want to present software that is by and large ready for practical use,” says Stefan Kraß, “and the software maturity achieved through close clinical collaboration might motivate the industry to want to market these results and address the necessary certification.”

The SPARTA project (Software Platform for Adaptive Multimodal Radio and Particle Therapy with Autarkic Extendibility) is funded by the German Federal Ministry of Education and Research (BMBF). It started on April 1, 2013 and will run for three years. The consortium encompasses ten partners, including research institutes, medical technology companies, and university clinics.

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/the-radiation-thera...
http://www.projekt-sparta.de

Dr. Guido Prause | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Health and Medicine:

nachricht Safer viruses for vaccine research and diagnosis
11.12.2019 | University of Queensland

nachricht Tuberculosis: New drug substance BTZ-043 is being tested on patients for the first time
11.12.2019 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>