Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The microbiota in the intestines fuels tumour growth

18.09.2018

The team of Professor Dirk Haller at the Technical University of Munich (TUM) made an unexpected discovery while investigating the triggering factors of colon cancer: Cell stress in combination with an altered microbiota in the colon drives tumour growth. Previously, it was assumed that this combination only contributes to inflammatory intestinal diseases.

"With our study we originally wanted to study the role of bacteria in the intestines in the development of intestinal inflammation," explains Professor Dirk Haller from the Department of Nutrition and Immunology at the Weihenstephan Science Centre of the TUM.


Prof. Dirk Haller discovered that it is not cell stress alone that leads to tumour growth, but the cooperation of stress and microbiota - here with Sandra Bierwirth (left) and Olivia Coleman.

A. Heddergott/ TUM

"However, the surprising result for us was the discovery that bacteria together with stress in cells caused tumours (exclusively in the colon) and without the involvement of inflammation".

The investigations were initially carried out using the mouse model. In germ-free (i.e. sterile) animals, in which the activated transcription factor ATF6 regulated stress in the intestinal mucosa (intestinal epithelium), no change could be observed.

But as soon as the microbiota, i.e. all the microorganisms in the intestine, were transplanted back into germ-free animals, tumours developed in the colon of the mice. Using Koch's postulates, Haller and his team were able to show that microorganisms are involved in the development of cancer in the colon.

The transcription factor ATF6 regulates stress in cells, and the intensity and duration of activation is increased with diseases. "However, it is not cell stress alone that leads to tumour growth, but the combination of stress and microbiota that favours cancer growth," says Haller, head of ZIEL - the Institute for Food & Health at TUM.

ATF6 incidence found to be increased in colon cancer patients

Subsequently, in cooperation with the clinic on the right side of the Isar (Prof. Janssen), the data of 541 patients with colon cancer were examined. In those cases where the level of transcription factor ATF6, which triggers cell stress, was significantly increased, the recurrence rate after surgery increased: About ten percent of patients were at risk of getting colon cancer a second time.

"In certain patients, the protein ATF6 could serve as a diagnostic marker for an increased risk of colon cancer and could indicate the start of therapy at an early stage," said Prof. Haller - "a microbial therapy is conceivable, when we know more about the composition of the bacterial flora. What now became clear, however: Chronic inflammation has no effect on cancer development in the colon."

More Information:
This work was funded by the DFG Research Fellowship (RTG) 1482, the DFG Focus Program (SPP) 1656 and the DFG Special Research Program (SFB) 1335.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dirk Haller
Technical University Munich
Chair of Nutrition and Immunology
ZIEL – Institute for Food & Health (Director)
Phone.: +49-(0)8161-712026
Mail: dirk.haller@tum.de

Originalpublikation:

Olivia Coleman, Elena Lobner, Sandra Bierwirth, Adam Sorbie, Nadine Waldschmitt, Eva Rath, Emanuel Berger, Ilias Lagkouvardos, Thomas Clavel, Kathleen McCoy, Achim Weber, Mathias Heikenwälder, Klaus-Peter Janssen and Dirk Haller: Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis, Gastroenterology 9/2018.
DOI: 10.1053/j.gastro.2018.07.028

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34947/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: DFG Nutrition bacterial flora cell stress colon cancer inflammation tumour growth

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>