Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The heart: Digital or analog?

27.08.2018

VTCRI researchers shed dramatic light on heart bioelectricity disorders

Scientists at the Virginia Tech Carilion Research Institute (VTCRI) have found evidence that may disrupt conventional understanding about how electrical activity travels in the heart -- a discovery that potentially can lead to new insight into medical problems such as heart arrhythmia and sudden cardiac death.


This is an image from a super resolution microscope shows molecules occupying a tiny space between heart muscle cells. In green are gap junction molecules, which provide a low-resistance path for electrical conductivity. Molecules in red are sodium channel beta molecules, which help conduct electricity and glue - as Virginia Tech Carilion Research Institute scientists discovered -cooperatively activating sodium channels together, contributing to electrical excitation to spread through heart muscle. Researchers hope to target this structure to develop anti-arrhythmic therapies for heart ailments.

Credit: Virginia Tech/Gourdie lab

The research study, now online but scheduled to appear as a final version on Tuesday, Sept. 4, in the journal eLife, may inform the development of new classes of drugs to treat heart rhythm disorders, which occur when someone's heart beats too quickly, slowly, or irregularly.

Led by Rob Gourdie, a professor at VTCRI, the international team of scientists revealed how electrical impulses might travel through heart muscle in steps, jumping between cells in a rapid, almost on-off fashion, like a digital wave -- rather than through a smooth, continuous flow of current, like an analog wave.

"Our goal is to find ways to control heart rhythm disturbances," said Gourdie, who is also a professor in the Department of Biomedical Engineering and Mechanics with the Virginia Tech College of Engineering. "Learning how bioelectricity works in the heart at the nuts-and-bolts, molecular level is important for human health, because it will help us understand why the heart sometimes beats out of rhythm, and potentially point to a new path for treatment. With heart disorders increasing as the population grows older, new strategies for preventing arrhythmias including new drugs are urgently required to help heart patients."

Atrial fibrillation is the most common type of arrythmia, affecting an estimated 2.7 million to 6.1 million people in the United States, according to the U.S. Centers for Disease Control and Prevention.

And while the number of people living with some form of arrhythmia is expected to increase with the aging of the U.S. population, the movement of potential new drugs to treat the conditions are lagging in the development pipeline, including in clinical trials.

Gourdie said the new discovery could be a paradigm shift in the understanding of electrical activation in heart muscle.

The researchers showed that sodium channels from neighboring heart muscle cells may cooperate to move electrical current that leads to regenerative impulses from one heart muscle cell to the next.

"Sodium channels are literally stuck together between cells in way that seems to ensure that the firing of channels in one cell sparks partnering channels in the neighboring cell," Gourdie said. "The molecular machinery seems to be in place for bioelectrical signals to step between heart cells, not wholly unlike how impulses jump between nerve cells in a stepping-stone-like manner at neural synapses."

It is commonly thought that bioelectrical signals smoothly flow in the heart in an analog fashion, moving continuously from cell to cell through conducting structures, called gap junctions, that directly couple cells together.

The new study from Gourdie and his colleagues challenges this idea.

The researchers, which include Gourdie's former postdoctoral associate Rengasayee Veeraraghavan, now at The Ohio State University; and his current postdoctoral associate, Daniel Hoagland; conducted experiments in cardiac cell cultures from animal models using an array of analysis techniques.

Together with Steven Poelzing, an associate professor, and James Smyth, an assistant professor, both at VTCRI, along with researchers from the University of Michigan, Case Western University, and Imperial College London, the team showed the key to this cell-to-cell electrical interaction is a component of the membrane sodium channel called a beta subunit, which also serves an adhesion function to bind the sodium channel complex together, forming a structure that the team calls an ephapse.

"During our experiments, we have shown that we can unglue ephapses and cause heart arrhythmias," Gourdie said. "What we are looking for now is a drug to stop the ephapses from becoming unglued. We believe that if we can find a drug that can hold this tiny area between heart muscle cells together in disease states, we might have a new way of stabilizing heart rhythms that have gone awry."

During the course of the research, the scientists used a variety of sophisticated analysis techniques including super-resolution microscopy, electric cell-substrate impedance spectroscopy, transmission electron microscopy, isolated myocyte electrophysiology, surface scanning confocal microscopy, and optical mapping and electrocardiography.

"Our paradigm for the propagation of impulses in the heart is very simplistic," said Igor Efimov, a professor and chairman of the Department of Biomedical Engineering at George Washington University, who commented on the study but was not involved in the research. "We teach that electrical conduction in the heart is regulated primarily by connexin 43 or sodium channels. But it is more complicated than that. This paper elegantly reveals the role of a regulatory subunit which is not just involved in electrical conduction--it also regulates adhesion, and thereby creates a cleft or gap to provide a basis for cell-to-cell communication."

Efimov and Gourdie both mentioned the research supports a theory by physiologist Nicholas Sperelakis in 1977 at the University of Virginia. Sperelakis proposed an electric-field mechanism of electrical activity between excited heart cells, as a precursor theory to what has come to be described as ephaptic conduction.

"Gourdie and his colleagues are showing a strong basis for the ephaptic conduction theory," Efimov said. "The traditional view of electrical coupling through low-resistance channels is not the only explanation. This new point of view could change the way we teach students, and the evidence as presented in the study also explains why a number of cancer drugs cannot be used because of their cardiotoxicity."

###

The study was supported by the National Institutes of Health, the American Heart Association, and the Virginia Tech Carilion Research Institute.

Media Contact

John Pastor
jdpastor@vt.edu
540-526-2222

 @vtnews

http://www.vtnews.vt.edu 

John Pastor | EurekAlert!
Further information:
http://research.vtc.vt.edu/news/2018/aug/26/heart-digital-or-analog-vtcri-researchers-shed-dra/
http://dx.doi.org/10.7554/eLife.37610

More articles from Health and Medicine:

nachricht The FiTS app now offering cooking videos as it expands its concept for long-term behavior modification
18.09.2018 | vitaliberty GmbH

nachricht The microbiota in the intestines fuels tumour growth
18.09.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Searching for clues on extreme climate change

18.09.2018 | Earth Sciences

The microbiota in the intestines fuels tumour growth

18.09.2018 | Health and Medicine

Patented nanostructure for solar cells: Rough optics, smooth surface

18.09.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>