Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M study links breast cancer to the body's internal clock

09.05.2018

For years, doctors have associated the BRCA1 and BRCA2 gene mutations with an increased risk of breast cancer.

But researchers at Texas A&M University have now identified another gene that may have an impact on breast cancer--associated with the body's circadian rhythm.


Altered expression of luminal and basal markers in Per2-/- mammary glands. Immunflorescent staining showing localization of myoepthelial (K14 -green) and luminal (E-cadherin-red) markers in virgin Per2-/- mammary glands.

Credit: Dr. Cole McQueen, Texas A&M University

Texas A&M College of Veterinary Medicine & Biomedical Sciences (CVM) professor Weston Porter and his team have found that Period 2 (Per2), a regulatory mechanism within each cell's peripheral clock, plays a crucial function in mammalian mammary gland development and that when suppressed, Per2 leads to severely disrupted gland development in mice.

The findings, published in the scientific journal Development, add to a growing list that ties disruptions to our circadian rhythm--that is, the "central clock" mechanism in our brains--to a higher risk of cancer progression, obesity, some neuromuscular diseases, and other impairments, including jetlag.

Circadian rhythm is controlled by the suprachiasmatic nucleus (SCN) in the brain's anterior hypothalamus. In addition to coordinating our sleep patterns, the SCN coordinates the other peripheral clocks in our body, which run on a 24-hour cycle that corresponds with each day.

"Not only do we have a central clock, but every one of our cells has one of these peripheral clocks and they're in coordination with the central clock," Porter said. "When you wake up in the morning and see light, the light goes right into the brain and it triggers this molecular mechanism that regulates the (circadian rhythm) process."

In their study, Porter's team evaluated Per2, which provides the "negative feedback," or counterbalance, to the circadian rhythm process.

"The negative and positive feedback mechanisms are constantly in balance, going up and down. One's up during the day, the other one's up at night--they oscillate right at 24 hours--but when you see light, that resets it in the morning," Porter said. "When Per2 comes back, it suppresses another gene called BMAL or CLOCK."

Their finding--that Per2 has a crucial function outside of timekeeping in mammalian mammary gland development where Per2 plays a role in cell differentiation and identity--describes a potentially important role for Per2 in breast cancer. Per2 expression is lost in a large percentage of mammary tumors, which suggests it may have protective effects.

"We discovered that these glands have what we call a kind of a bipotent phenotype; they're actually halfway to cancer," Porter said. "They've already have many of the characteristics you would see in a premalignant cell.

"We started to look at the mechanism associated with that and found that the stem cell markers associated with a loss of Per2 are more basal, which is characteristic of more invasive cancer," he said. "This reinforces the idea that Per2 is functioning as a tumor suppressor gene associated with cell identity."

In addition to disruption of the developing mammary gland, Porter also saw the same defect in transplant studies, showing that it is Per2, and not just the central clock itself, that is responsible for the lack of mammary ductal growth in the developing gland.

Their next step is to revisit studies that correlate working a night shift with an increased risk of breast cancer.

"Right now, we are investigating how our findings relate to humans," Porter said. "There are studies out there showing a relationship between decreased levels of Per2 and certain types of breast cancer, which are more invasive. So, we believe that there is a direct relationship."

Understanding circadian rhythm and its effects on the body have become increasingly important to the science community. The 2017 Nobel Prize for Physiology or Medicine was awarded to researchers for discoveries of the molecular mechanisms controlling the circadian rhythm, and the National Cancer Institute recently named the role of circadian rhythms in cancer as one of their 12 provocative questions for the year.

Media Contact

Megan Palsa
mpalsa@cvm.tamu.edu
979-862-4216

http://www.tamu.edu 

Megan Palsa | EurekAlert!
Further information:
http://dx.doi.org/10.1242/dev.157966

More articles from Health and Medicine:

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

Rising CO2 has unforeseen strong impact on Arctic plant productivity

21.02.2019 | Studies and Analyses

A landscape of mammalian development

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>