Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testosterone Activates Autism Risk Genes

06.11.2018

Scientists find explanation for higher disease risk in boys / Publication in "Frontiers in Molecular Neuroscience"

Autism is four times more common in boys than girls. Scientists in the Department of Human Molecular Genetics at Heidelberg University Hospital have for the first time found an explanation.


Investigations in human cells and mouse brain tissue showed that activation of certain risk genes by the male sex hormone testosterone is considerably stronger in the brain before and after birth.

These specific gene defects were so far only known to increase the risk of neurodevelopmental disease. This new data indicates that a genetic defect in males may affect brain development more strongly than in females. These results have been published in the journal "Frontiers in Molecular Neuroscience".

In autistic people, nerve cell development is altered in the brain. One in 68 children is affected (about 1.5%). Symptoms manifest early on and a diagnosis is usually made before the age of three. Typical symptoms include difficulties in social interaction, communication, and perception processing.

Autistic people often show intense special interests and skills, as well as repetitive and narrow restrictive behavioral patterns. However, these traits of autistic behavior vary strongly from patient to patient and are therefore referred to as the autism spectrum.

Although numerous risk factors for the onset of autistic disorders – mainly genetic – have been discovered in recent years, the exact developmental mechanisms of its onset are still poorly understood. Senior author Professor Dr. Gudrun Rappold, Director of the Department of Human Molecular Genetics, says, “Now we have a first indication as to why boys have a much higher autism risk than girls – at least in reference to an important group of the numerous risk genes”.

The tests performed in her research group showed that certain genes, named SHANK1, 2, and 3, are more frequently translated into proteins in the young male brain, influenced by higher amounts of the sex hormone testosterone. The research group in Heidelberg has been investigating SHANK genes for years, as defects in these genes play an important role in the development of autism and other mental illnesses.

More Testosterone – More Shank Protein – Higher Impact on Gene Defects

For the tests, the team used childhood neuronal tumor cells (neuroblastoma) as a model for developing nerve cells. In these cells, the scientists discovered that activation of the SHANK genes depends on the binding of testosterone to a so-called androgen receptor.

If this receptor was blocked, the risk genes were no longer strongly activated. “We confirmed this by examining brain regions of young mice, in which the androgen receptor was absent: these genes were clearly less activated than the ones in control animals with intact receptors”, explains Dr. Simone Berkel, who carried out this study together with Ph.D student Ahmed Eltokhi.

The scientists went on to investigate the amount of Shank protein made in the brains of young male and female mice before and after birth. Male animals, which have a naturally higher level of testosterone in the blood and brain, express significantly higher amounts of Shank proteins than female animals. “We assume that the higher amount of Shank protein in the male brain will enhance the ‘impact’ of defects in the SHANK genes, thus increasing the risk of autism”, concludes Rappold.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gudrun A. Rappold
Abteilung Molekulare Humangenetik
Institut für Humangenetik
Universitätsklinikum Heidelberg
Tel: 06221 /56 50 59
E-Mail: gudrun_rappold@med.uni-heidelberg.de

Originalpublikation:

Berkel S, Eltokhi A, Fröhlich H, Porras-Gonzalez D, Rafiullah R, Sprengel R, Rappold GA: Sex hormones regulate SHANK gene expression. Front Mol Neurosci. 2018 Sep 25;11:337. doi: 10.3389/fnmol.2018.00337. eCollection 2018

Eltokhi A, Rappold G, Sprengel R. Distinct Phenotypes of Shank2 Mouse Models Reflect Neuropsychiatric Spectrum Disorders of Human Patients With SHANK2 Variants. Front Mol Neurosci. 2018 Jul 19;11:240. doi: 10.3389/fnmol.2018.00240. eCollection 2018. Review

Julia Bird | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Can chocolate, tea, coffee and zinc help make you more healthy?
02.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Biomarker discovered for most common form of heart failure
01.11.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

Im Focus: Dissecting a molecular toolbox driving motility and infection

HZI scientists establish how the cytoskeleton is regulated and manipulated

Various bacterial pathogens stimulate their hosts to engulf them during infection processes, allowing the bacteria to gain access to the host cell cytoplasm....

Im Focus: Electronic Highways on the Nanoscale

For the first time, the targeted functionalization of carbon-based nanostructures allows the direct mapping of current paths, thereby paving the way for novel quantum devices

Computers are getting faster and increasingly powerful. However, at the same time computing requires noticeably more energy, which is almost completely...

Im Focus: Biomarker discovered for most common form of heart failure

Cedars-Sinai discovery may aid doctors in diagnosing at-risk patients before symptoms appear

A team led by a Cedars-Sinai physician-scientist has discovered a biomarker--a protein found in the blood--for the most common type of heart failure, a new...

Im Focus: Shedding light on Weyl fermions

Researchers from the Theory Department of the Max Planck Institute for Structure and Dynamics (MPSD) in Hamburg and North Carolina State University in the US have demonstrated that the long-sought magnetic Weyl semi-metallic state can be induced by ultrafast laser pulses in a three-dimensional class of magnetic materials dubbed pyrochlore iridates. Their results, which have now been published in Nature Communications, could enable high-speed magneto-optical topological switching devices for next-generation electronics.

All known elementary particles can be sorted into two categories: bosons and fermions. Bosons carry forces, like the magnetic force or gravity, while fermions...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

New material cleans and splits water

05.11.2018 | Materials Sciences

Rutgers researchers advance stem cell therapy with biodegradable scaffold

05.11.2018 | Life Sciences

Medica 2018: Control with your feet - computer game to help prevent thrombosis

05.11.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>