Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test could identify smokers at risk of emphysema

07.04.2010
CT scans can detect differences in lung blood flow patterns, which identify smokers most at risk of emphysema

Using CT scans to measure blood flow in the lungs of people who smoke may offer a way to identify which smokers are most at risk of emphysema before the disease damages and eventually destroys areas of the lungs, according to a University of Iowa study.

The study found that smokers who have very subtle signs of emphysema, but still have normal lung function, have very different blood flow patterns in their lungs compared to non-smokers and smokers without signs of emphysema.

This difference could be used to identify smokers at increased risk of emphysema and allow for early intervention. The findings appear this week in the Early Edition of the Proceedings of the National Academy of Sciences.

"We have developed a new tool to detect early emphysema-related changes that occur in smokers who are susceptible to the disease," said lead study author Eric Hoffman, Ph.D., UI professor of radiology, internal medicine and biomedical engineering. "Our discovery may also help researchers understand the underlying causes of this disease and help distinguish this type of emphysema from other forms of chronic obstructive pulmonary disease. This type of CT scan could even be a tool to test the effectiveness of new therapies by looking at the changes in lung blood flow."

As many as 24 million Americans have chronic obstructive pulmonary disease (COPD) -- a group of serious lung diseases that includes emphysema -- and COPD is the fourth leading cause of death nationwide. Because COPD is a group of different diseases, identifying more effective treatments may hinge on distinguishing between these diseases and targeting them separately.

The team used multi-detector row CT imaging to measure blood flow patterns in the lungs of 41 study participants -- 17 non-smokers and 24 smokers. All the participants had normal lung function, but 12 of the smokers had very subtle signs of emphysema. The CT scans showed that these 12 individuals had the most disrupted patterns of blood flow compared to the other participants.

The findings also support the idea that abnormal blood flow occurs before emphysema develops.

"Although the underlying causes of emphysema are not well understood, smoking increases the risk of developing the disease," Hoffman said. "Our study suggests that some smokers have an abnormal response to inflammation in their lungs; instead of sending more blood to the inflamed areas to help repair the damage, blood flow is turned off and the inflamed areas deteriorate."

The cellular pathway that turns off blood flow is helpful when an area of the lung has become permanently blocked and cannot be rescued. In that case, the lung "optimizes gas exchange" and stops supplying the area with blood. However, lung inflammation caused by smoking can be resolved and resultant damage repaired by increased blood flow, which brings oxygen and helpful cellular components to the site of injury.

This study suggests that the ability to distinguish when to turn off or when to ramp up blood flow is defective in some people -- probably due to genetic differences. If this genetic difference is coupled with smoking, which increases lung inflammation, that could increase the risk of developing emphysema.

In addition to Hoffman, the UI team included Sara Alford, a student in the Medical Scientist Training Program and first author of the study, Edwin van Beek, M.D., Ph.D., professor of radiology, and Geoffrey McLennan, M.D., Ph.D., UI professor of internal medicine, radiology and biomedical engineering.

Hoffman and McLennan are founders and shareholders of VIDA Diagnostics, a company commercializing lung-imaging software derived from laboratory research.

The study was funded by a grant from the National Institutes of Health.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>