Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting tuberculosis 'hotspots' could have widespread benefit

29.05.2012
Reducing tuberculosis transmission in geographic "hotspots" where infections are highest could significantly reduce TB transmission on a broader scale, according to a study led by researchers at the Johns Hopkins Bloomberg School of Public Health.

An analysis of data from Rio de Janeiro showed that a reduction in TB infections within three high-transmission hotspots could reduce citywide transmission by 9.8 percent over 5 years, and as much as 29 percent over 50 years. The study was published May 28 by the journal PNAS.

"Targeting treatment of 'core groups' as a way to reduce community-wide transmission is common with diseases like HIV and malaria, but is less accepted as a mantra for TB control," said David Dowdy, MD, PhD, ScM, lead author of the study and assistant professor in the Bloomberg School's Department of Epidemiology.

"Our findings suggest that hotspots containing 6 percent of a city's population can be responsible for 35 percent or more of its ongoing TB transmission. Controlling TB in these hotspots may have a similar impact on long-term, community-wide TB incidence as achieving the same targets in the remaining 94 percent of the population."

For the study, Dowdy and his colleagues developed mathematical models for TB transmission using surveillance data from Rio de Janeiro. Each model tested different scenarios for TB transmission between the hotspot and the rest of the community. Co-infection with HIV was also factored into the model.

According to the study, reducing TB transmission rates in the hotspot to those in the general community reduced citywide TB incidence by a mean 2 percent per year over the first 5 years. By year 50, TB incidence was reduced by 29.7 percent, reflecting a 62.8 percent reduction in incidence in the hotspot and a 23.1 percent reduction in the remaining community.

Tuberculosis infects more than 8.8 million people worldwide, resulting in 1.4 million deaths each year. The disease is known to cluster in hotspots typically characterized by crowding, poverty and other illnesses such as HIV. Nevertheless, TB transmission appears to be more homogeneous than that of many other infectious diseases, in which 20 percent of the population may generate 80 percent of infections.

According to Dowdy, "TB may not follow the same '80/20' rule that we see in parasitic or sexually transmitted diseases, but the '35/6' rule seen in our study suggests that targeting hotspots is still the best way to control TB in a community."

The authors of "Heterogeneity in tuberculosis transmission and the role of geographic hotspots in propagating epidemics" are David W. Dowdy, Jonathan E. Golub, Richard Chaisson and Valeria Saraceni.

The research was supported by the Bill & Melinda Gates Foundation.

Follow the Johns Hopkins Bloomberg School of Public Health on Facebook at www.facebook.com/JohnHopkinsSPH or on Twitter at www.twitter.com/JohnsHopkinsSPH.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

Further reports about: Gates Foundation HIV TB infection health services targeting

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>