Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting headaches and tumors with nano-submarines

20.07.2018

Scientists at the Mainz University Medical Center and the Max Planck Institute for Polymer Research (MPI-P) have developed a new method to enable miniature drug-filled nanocarriers to dock on to immune cells, which in turn attack tumors. In the future, this may lead to targeted treatment that can largely eliminate damage to healthy tissue. The scientists have recently published their findings in the renowned scientific journal Nature Nanotechnology. Please watch https://www.youtube.com/watch?v=ZFVnBBWhCro for further information on the way nanocarriers work and function.

In modern medicine, patients receiving medication to treat tumors or for pain therapy are often given drugs that disperse throughout the entire body, even though the section of the organ to be treated may be only small and clearly demarcated. One solution would be to administer drugs that target specific cell types. Such nanocarriers are just what scientists are working to develop.


Combining a tiny drug capsule – a nanocarrier – with antibodies under acidic conditions results in the antibodies attaching to the drug carrier in a stable way. This makes it possible for nanocarriers to target diseased tissue.

Source: Stefan Schuhmacher

These contain, in a manner of speaking, miniature submarines no larger than a thousandth of the diameter of a human hair. Invisible to the naked eye, these nanocarriers are loaded with a pharmacologically-active agent, allowing them to function as concentrated transport containers.

The surface of these nanocarriers or drug capsules is specially coated to enable them, for example, to dock on to tissue interspersed with tumor cells. The coating is usually composed of antibodies that act much like address labels to seek out binding sites on the target cells, such as tumor cells or immune cells that attack tumors.

Professor Volker Mailänder and his team from the Department of Dermatology at the University Medical Center of Johannes Gutenberg University Mainz (JGU) have recently developed an ingenious new method of binding antibodies to such drug capsules. "Up to now, we have always had to use elaborate chemical methods to bind these antibodies to nanocapsules," explained Mailänder. "We have now been able to show that all that you need to do is to combine antibodies and nanocapsules together in an acidified solution."

In their paper in Nature Nanotechnology, the researchers emphasize that binding nanocapsules and antibodies in this way is almost twice as efficient as chemical bonding in the test tube, significantly improving the targeted transport of drugs. In conditions such as those found in the blood, they also found that chemically coupled antibodies almost completely lost their efficacy, while antibodies that are not chemically attached remained functional.

"The standard method of binding antibodies using complex chemical processes can degrade antibodies or even destroy them, or the nanocarrier in the blood can become rapidly covered with proteins," explained Professor Katharina Landfester from the Max Planck Institute for Polymer Research. In contrast, the new method, which is based on the physical effect known as adsorption or adhesion, protects the antibodies. This makes the nanocarrier more stable and enables it to distribute the drugs more effectively in the body.

To develop their new method, the researchers combined antibodies and drug transporters in an acidic solution. This led – in contrast to binding at a neutral pH – to more efficient coating of the nanoparticle surface. As the researchers explain, this leaves less room on the nanocarrier for blood proteins that could prevent them from docking to a target cell.

Overall, the researchers are confident that the newly developed method will facilitate and improve the efficiency and applicability of therapy methods based on nanotechnology.

About the project:
This project is funded by the German Research Foundation (DFG) Collaborative Research Center 1066 “Nanodimensional polymer therapeutics for tumor therapy” and by the Research Center for Immunotherapy (FZI) at Johannes Gutenberg University Mainz (JGU).

Image:
http://www.uni-mainz.de/bilder_presse/04_unimedizin_nanocarrier.jpg
Combining a tiny drug capsule – a nanocarrier – with antibodies under acidic conditions results in the antibodies attaching to the drug carrier in a stable way. This makes it possible for nanocarriers to target diseased tissue.
This graphic can be used free of charge provided its source is indicated:
Stefan Schuhmacher

Press contact
Oliver Kreft
Corporate Communications
Mainz University Medical Center
Langenbeckstr. 1
55131 Mainz, GERMANY
phone +49 6131 17-7428
fax +49 6131 17-3496
e-mail: pr@unimedizin-mainz.de
http://www.unimedizin-mainz.de/index.php?id=240&L=1

Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research (MPI-P) is one of the leading international research centers in the field of polymer research. Its research focus on soft matter and macromolecular materials makes it unique worldwide. Its goal is to produce and characterize new polymers. It also investigates their physical and chemical properties. The MPI-P was founded in 1984. It employs more than 500 people from Germany and abroad, the vast majority of whom are involved in research.

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only medical facility providing supramaximal care in Rhineland-Palatinate while also functioning as an internationally recognized hub of medical science. It has more than 60 clinics, institutes, and departments that collaborate across the various disciplines. Highly specialized patient care, research, and teaching form an integral whole at the Mainz University Medical Center. Approximately 3,300 students are trained in medicine and dentistry in Mainz. With its approximately 7,500 personnel, the Mainz University Medical Center is also one of the largest employers in the region and an important driver of growth and innovation.

Further information is available online at http://www.unimedizin-mainz.de/index.php?id=240&L=1

Wissenschaftliche Ansprechpartner:

Professor Dr. Volker Mailänder
Department of Dermatology
Mainz University Medical Center
Langenbeckstr. 1
55131 Mainz, GERMANY
phone +49 6131 17-0
e-mail: Volker.mailaender@unimedizin-mainz.de

Originalpublikation:

"Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona", DOI: http://dx.doi.org/10.1038/s41565-018-0171-6; https://www.nature.com/articles/s41565-018-0171-6

Weitere Informationen:

https://youtu.be/ZFVnBBWhCro

Oliver Kreft M.A. | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>