New target for heart failure therapy identified

The findings, which will be published online this week in Proceedings of the National Academy of Sciences, show that aldosterone production is mediated by a protein called beta-arrestin-1. Beta-arrestin-1 binds to angiotensin II receptors when they are activated by angiotensin II.

Aldosterone is secreted by the adrenal cortex. Its levels are elevated in chronic heart failure, and its presence contributes to morbidity and mortality of the disease. It contributes to heart failure progression and diminished cardiac function after myocardial infarction.

The production of aldosterone was previously thought to be solely the result of the activation of G-proteins, which are also activated when angiotensin II binds to its receptors, according to Anastasios Lymperopoulos, Ph.D., a Post-Doctoral Research Fellow in the Center for Translational Medicine and the George Zallie and Family Laboratory for Cardiovascular Gene Therapy at Jefferson Medical College of Thomas Jefferson University.

“The bottom line is that in order to effectively suppress aldosterone production, you need to inhibit beta-arrestin-1 in addition to inhibiting G-proteins,” said Dr. Lymperopoulos, who is the lead author of the study.

All the drugs currently available for suppression of aldosterone by angiotensin II primarily target G-protein signaling pathways. However, Walter Koch, Ph.D., the W.W. Smith Professor of Medicine and the Director of the Center for Translational Medicine and the George Zallie and Family Laboratory for Cardiovascular Gene Therapy, said that these data clearly show that beta-arrestin1 plays a more significant role in aldosterone secretion than G-proteins.

“Aldosterone secretion is dependent on beta-arrestin-1,” Dr. Koch said. “It may not be independent of G-proteins, but beta-arrestin-1 is definitely the critical player. The goal should be to find a new antagonist that can block beta-arrestin-1 and G-protein activation equally well. Doing so would lead to lower aldosterone levels at its source and alleviate negative remodeling processes in the injured heart.”

Media Contact

Emily Shafer EurekAlert!

More Information:

http://www.jefferson.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors