Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish researchers’ discovery promises unique medicine for treatment of chronic and diabetic wounds

29.05.2012
A unique new medicine that can start and hasten healing of diabetic and other chronic sores is being developed at Umeå University in Sweden. After several years of successful experimental research, it is now ready for clinical testing.

Behind this new medicine is a group of researchers at the Department of Medical Chemistry and Biophysics who have made the unique finding that the protein plasminogen is a regulator that initiates and hastens wound healing by triggering the inflammatory reaction. Their discovery is now being published in the highly ranked journal Blood.

“Today we have the knowledge needed to develop a medicine,” says Professor Tor Ny, one of the authors of the article. “The bulk of the preclinical research has been completed, and we have been in contact with the Medical Products Agency to discuss a program for clinical testing.”

Plasminogen is a well-known plasma protein that is produced in the liver and found in all bodily fluids. The Umeå researchers have re-evaluated its role and managed to show that the concentration of plasminogen increases dramatically in and around wounds, which is an important signal to start the inflammatory reaction required for healing. In diabetic sores the level of plasminogen does not rise in the same way, and this seems to be the reason why these sores do not heal. In mice and rats the researchers were able to show that the healing process starts immediately when plasminogen is injected into the sore, which then heals fully.

A cell line for producing plasminogen on a larger scale has also been developed, and the goal is to be able to start clinical testing as soon as funding can be arranged. The researchers have high hopes, as plasminogen is an endogenous substance that can be assumed not to produce side effects.

The need for a biological pharmaceutical for treating intractable wounds is pressing indeed. Diabetic sores that heal poorly or not at all are the most severe type of chronic sores, affecting millions of people annually. Many of the roughly 350 million diabetes patients in the world develop foot ulcers, and in 10-15 million cases this ultimately leads to amputation. Today’s treatment of diabetic ulcers consists primarily of traditional wound care, with compresses and bandages; there is no effective medication.

The Umeå researchers are initially concentrating on diabetic wounds, but the medicine has great potential for working on other types of stubborn sores. This includes damaged eardrums and periodontitis. The new pharmaceutical has moreover been shown to be helpful in combatting antibiotic-resistant bacteria (MRSA).

Reference
Yue Shen, Yongzhi Guo, Peter Mikus, Rima Sulniute, Malgorzata Wilczynska, Tor Ny, Jinan Li: Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds Blood. 2012 May 4. [Epub ahead of print]

For more information, please contact Professor Tor Ny: mobile: +46 (0)73-620 50 65; e-mail tor.ny@medchem.umu.se

Hans Fällman | idw
Further information:
http://www.umu.se
http://www.vr.se

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>