Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish researchers’ discovery promises unique medicine for treatment of chronic and diabetic wounds

29.05.2012
A unique new medicine that can start and hasten healing of diabetic and other chronic sores is being developed at Umeå University in Sweden. After several years of successful experimental research, it is now ready for clinical testing.

Behind this new medicine is a group of researchers at the Department of Medical Chemistry and Biophysics who have made the unique finding that the protein plasminogen is a regulator that initiates and hastens wound healing by triggering the inflammatory reaction. Their discovery is now being published in the highly ranked journal Blood.

“Today we have the knowledge needed to develop a medicine,” says Professor Tor Ny, one of the authors of the article. “The bulk of the preclinical research has been completed, and we have been in contact with the Medical Products Agency to discuss a program for clinical testing.”

Plasminogen is a well-known plasma protein that is produced in the liver and found in all bodily fluids. The Umeå researchers have re-evaluated its role and managed to show that the concentration of plasminogen increases dramatically in and around wounds, which is an important signal to start the inflammatory reaction required for healing. In diabetic sores the level of plasminogen does not rise in the same way, and this seems to be the reason why these sores do not heal. In mice and rats the researchers were able to show that the healing process starts immediately when plasminogen is injected into the sore, which then heals fully.

A cell line for producing plasminogen on a larger scale has also been developed, and the goal is to be able to start clinical testing as soon as funding can be arranged. The researchers have high hopes, as plasminogen is an endogenous substance that can be assumed not to produce side effects.

The need for a biological pharmaceutical for treating intractable wounds is pressing indeed. Diabetic sores that heal poorly or not at all are the most severe type of chronic sores, affecting millions of people annually. Many of the roughly 350 million diabetes patients in the world develop foot ulcers, and in 10-15 million cases this ultimately leads to amputation. Today’s treatment of diabetic ulcers consists primarily of traditional wound care, with compresses and bandages; there is no effective medication.

The Umeå researchers are initially concentrating on diabetic wounds, but the medicine has great potential for working on other types of stubborn sores. This includes damaged eardrums and periodontitis. The new pharmaceutical has moreover been shown to be helpful in combatting antibiotic-resistant bacteria (MRSA).

Reference
Yue Shen, Yongzhi Guo, Peter Mikus, Rima Sulniute, Malgorzata Wilczynska, Tor Ny, Jinan Li: Plasminogen is a key proinflammatory regulator that accelerates the healing of acute and diabetic wounds Blood. 2012 May 4. [Epub ahead of print]

For more information, please contact Professor Tor Ny: mobile: +46 (0)73-620 50 65; e-mail tor.ny@medchem.umu.se

Hans Fällman | idw
Further information:
http://www.umu.se
http://www.vr.se

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>