Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survival without lasting damage

15.02.2016

Anyone who survives the rare blood disorder TTP is then left fighting the lingering neurological damage. So this does not remain the case, the Department of Hematology of Bern University Hospital is developing a faster treatment that is less likely to result in a relapse.

The rare and life-threatening blood disorder thrombotic thrombocytopenic purpura (TTP) mainly affects young, otherwise healthy people aged between 20 and 50. Only 2-3 people out of every million will fall ill with TTP, which forms blood clots in the small blood vessels.


Schematic presentation of platelets (purple) which stick to the over-long Von Willebrand factor (brown).

Massachusetts Medical Society


Blood smear of patient with TTP under the microscope.

Department of Hematology, Inselspital, Bern University Hospital

The decreased blood flow damages the heart, brain and kidneys in particular and can lead to strokes and heart attacks. The disorder mainly affects women and will lead to death in over 90 percent of cases if it is not treated within a few days.

Autoimmune disorder with lasting consequences

TTP is an autoimmune disorder with antibodies against the ADAMTS13 protein enzyme. Through the acute lack of ADAMTS13, the von Willebrand factor is no longer regulated in terms of size and blood platelets spontaneously adhere to it. For this reason, the standard treatment at the moment consists of daily plasma exchange (removal of antibodies, supply of ADAMTS13) and immunosuppressive drugs.

Despite the treatment, 10-20 percent of patients die during the acute episode. More than half of patents are left with neurological damage as a result of the decreased blood flow, such as impaired concentration, attention deficit and visual problems, numbness in an arm or leg and paralysis of these. With almost half, the disorder flares up again within 1-2 years.

Rapid control of the disorder with lower rate of relapses

In a multicentre clinical study (CH, AU, IT, BE, USA) with the involvement of the Department of Hematology of the Bern University Hospital, it has now been possible to treat TTP with an anti-von Willebrand factor nanobody, which prevents the blood platelets from adhering. As a result, TTP can be forced back within a few days and the organs are protected from further decreased blood flow – which prevents at least some of the remaining damage.

75 patients were involved in the study. Together with the standard treatment, 36 patients received the new active ingredient and the 39 patients of the control group received a placebo. Bern-based haematologist Johanna Kremer Hovinga analysed all the blood samples and found that in 95 percent of patients, who received the new active ingredient, the acute phase of TTP had ended after scarcely 4 days, making this almost 40 percent faster than with the traditional treatment.

The side-effects were generally comparable, but light bleeding occurred more frequently with the new active ingredient (54% of patients in comparison with 38% with the placebo). As long as the medication was given, no patient had a relapse, although the autoimmune reaction continued to be active in at least 20 percent of patients. Another advantage: Because the new active ingredient can be injected subcutaneously, it was possible to treat patients on an outpatient basis after just a few days.

Long-term special subject at the Bern University Hospital and Bern University

The Department of Hematology at the Bern University Hospital and the University of Bern have been researching TTP and ADAMTS13 since the mid-1990s and have published extensive work in this. This study in the New England Journal of Medicine is the first major randomised patient study in the field of the rare disorder of TTP and shows a promising new treatment approach based on expanded knowledge of TTP.

Contact: Prof. Dr.med. Johanna Kremer Hovinga Strebel, senior consultant, Department of Hematology and Central Hematology Laboratory, Bern University Hospital, +41 31 632 02 65.

Weitere Informationen:

http://www.insel.ch/en/
http://www.nejm.org/doi/full/10.1056/NEJMoa1505533

Monika Kugemann | Universitätsspital Bern

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>