Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Against sulphur dioxide in food products

19.06.2009
When fruits and vegetables are processed to food products such as wine and snacks, in most cases sulphur dioxide (SO2) has a finger in the pie. The main function of this additive is the prevention of enzymatic and non enzymatic browning in foods, especially fruit and vegetable products.

In addition, sulphur dioxide has strong antimicrobial capacity and preserves against microbial spoilage. "The SO2SAY project will develop a strategy to replace the application of sulphur dioxide or its salts for almost all food products" explains coordinator Hauke Hilz. "An important aspect for food applications is the preservation of the sensory quality and shelf-life of the SO2-free products."

EU-funded project starts research on replacement of sulfites in food

Nine partners from four European countries and Israel start their work on SO2SAY, a three year EU-funded project with a total budget of 4.5 mio €, thereof 3 mio € funding, with a kick off meeting in Bremerhaven, Germany. The project, coordinated by ttz Bremerhaven, will combine research on innovative SO2 replacing agents, mild processing steps and packaging technologies. ttz Bremerhaven (DE), Campden BRI (UK), Wageningen University (NL), University of Bonn (DE), Fundacion Leia (ES), Gemüse Meyer (DE), Biurko Gorri (ES), Ekolo (ES) and Frutarom (IL) defined to increase food quality, to reduce health risks for consumers as well as to increase the competitiveness of European SMEs in the food and drink industry on the global market as their main strategic objectives.

Sulphur dioxide (SO2) is traditionally used as antioxidant and preservative in fruit and vegetable products, dried fruits, snack products and wine. The main advantage of SO2 is the combination of antioxidative activity with its ability to inhibit polyphenol oxidase, which is catalysing browning of food products. Furthermore, sulphur dioxide acts as food preservative preventing microbial growth. However, SO2 and sulphites strongly reduce vitamin B1 uptake. Reduced uptake of this vitamin can lead to several health problems such as chronic headache and disturbance of the memory. Food is the main source for the uptake of sulphur dioxide.

A special risk group is the group of asthma patients. Sulphites are promoting attacks of asthma. For these patients an intake of less than 10 mg sulphite might be enough to provoke an asthma attack.

"Considering these facts, the application of SO2 in food products has to be avoided by novel processing technologies or replaced by different, healthier additives", knows Hauke Hilz. "This will promote Food Quality and Safety as well as consumer's Quality of Life".

Three approaches are followed to finally replace SO2 and sulphites in food:

a. Reduction of oxygen contact of the food producs e.g. by modified atmosphere packaging or by edible coatings for fruits and vegetables,
b. Use of plant metabolites as antioxidants and antimicrobial agents, and
c. Inhibition of polyphenol oxidase, which is responsible for enzymatic browning in fruit and vegetable products.
However, the reduction or replacement of SO2 bears the risk of changing the foodstuffs sensory properties, especially color and taste. Thus, consumers may refuse such food alternatives, though these alternative foodstuffs can be considered healthier. Therefore, all developments in the SO2SAY project will be accompanied by comprehensive sensory studies and consumer tests.

ttz Bremerhaven is an innovative provider of research services and operates in the field of application-oriented research and development. Under the umbrella of ttz Bremerhaven, an international team of proven ex-perts are working in the areas of food technology and bioprocess engineering, analytical science as well as water, energy and land use management, health systems, and administration and software.

Contact:
Christian Colmer
SO2SAY Dissemination Manager
Project Manager
Bio Process Engineering/Food Technology
ttz Bremerhaven
Fischkai 1, D-27572 Bremerhaven (Germany)
Phone: +49 (0)471 48 32 -150
FAX: +49 (0)471 48 32 - 129
ccolmer@ttz-bremerhaven.de

Britta Rollert | idw
Further information:
http://www.ttz-bremerhaven.de

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>