Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on the mechanisms of analgesics resistance in chronic pancreatitis patients

02.10.2019

One of the worst symptoms associated with inflammation or cancer of the pancreas is severe chronic pain. Pancreatic pain is difficult to treat, because many painkillers prove ineffective in pancreatic patients. In a recent study, a team at the Technical University of Munich (TUM) discovered the cause of this phenomenon for the first time: a particular neuroenzyme in the body is present in the nerves of the organ in high concentrations.

In many cases only potent analgesics such as opiates are able to relieve the suffering of those affected. But these medications have serious side effects, including dependency, fatigue and constipation. For this reason, scientists have long been searching for better pain therapies for pancreatic patients.


Dr. Ihsan Ekin Demir and his team in the Department of Surgery at TUM’s university hospital Rechts der Isar wanted to find out why pain treatment is so difficult and often ineffective in diseases of the pancreas.

Pain mediator profile of the pancreas

They examined pancreatic tissue samples from 42 female and male patients with chronic inflammation (chronic pancreatitis) or cancer of the organ (pancreatic carcinoma). The samples were taken from the head region of the organ. In this area, the nerve density is particularly high, and the pancreatic head is therefore often surgically removed for therapeutic reasons.

Tissue donations from healthy subjects served as controls in the new study. The scientists determined the levels of the most important neurotransmitters and neuroenzymes present in nerves of the pancreas for communication and signal transmission.

“We’ve created a pain mediator profile for this region of the pancreas, which plays a key role in the development and perception of pain. This makes it easy to detect pathological changes,” explains Ekin Demir, head of the study.

Inhibitors successfully tested in an animal model

It turned out that a specific enzyme was greatly increased in the nerves of the pancreatic tissue patient samples that were examined: neuronal nitric oxide synthetase (nNOS). This enzyme is responsible for the synthesis of the messenger NO, which plays a role in, among other things, the development of pain. In particular, NO leads to neuronal hyperactivation by binding to receptors on the neuronal surface.

When the scientists then added extracts from the patient samples to nerve cell cultures, the quantity of the nNOS enzyme increased in the cultured nerve cells.

In a well-established mouse model for pancreatic diseases, they then used a specific inhibitor that blocks nNOS. This substance is already approved as an experimental drug but cannot yet be used in humans. Demir’s team found that mice receiving the drug were much less sensitive to touch in the affected abdominal area than the control animals. This serves as an indicator of pain perception.

Ekin Demir’s team now plans to test the new drug in preliminary preclinical and later also in clinical studies with the hope of perhaps using it in the future as an alternative pain treatment for pancreatic patients.

Wissenschaftliche Ansprechpartner:

PD Dr. Dr. Ihsan Ekin Demir
Department of Surgery
Klinikum rechts der Isar of the TUM
Tel: +49-89-4140-5868
ekin.demir@tum.de

Originalpublikation:

Ihsan Ekin Demir, Tobias Heinrich, Dominique Carty, Ö. Cemil Saricaoglu, Sarah Klauss, Steffen Teller, Timo Kehl, Carmen M Reyes, Elke Tieftrunk, Maria Lazarou, Dorukhan H Bahceci, Betül Gökcek, Bahar E Ucurum, Matthias Maak, Kalliope N Diakopoulos, Marina Lesina, Michael Schemann, Mert Erkan, Achim Krüger, Hana Algül, Helmut Friess, Güralp O Ceyhan, Targeting nNOS ameliorates the severe neuropathic pain due to chronic pancreatitis, EBioMedicine, 2019, DOI: 10.1016/j.ebiom.2019.07.055
https://www.sciencedirect.com/science/article/pii/S2352396419304979?via%3Dihub

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35718/ - This text on the web

Dr. Ulrich Marsch | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>