Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study reveals bitter taste receptors regulate the upper respiratory defense system

09.10.2012
Findings could help uncover novel diagnostic tools and treatments for patients with chronic sinus conditions

A new study from a team of researchers at the Perelman School of Medicine at the University of Pennsylvania, the Monell Chemical Senses Center, and the Philadelphia VA Medical Center, reveals that a person's ability to taste certain bitter flavors is directly related to their ability to fight off upper respiratory tract infections, specifically chronic sinus infections. The new research is published in the latest edition of the Journal of Clinical Investigation.

Most humans experience five types of tastes: sweet, salty, sour, bitter, and savory. The sense of taste is mediated by taste receptor cells which are bundled in our taste buds. "Sour" and "bitter" taste sensations alert the body to harmful foods that have spoiled or are toxic. But based on genetics, up to 25 percent of the population cannot detect certain bitter flavors (non-tasters), 25 percent can detect exceedingly small quantities (super-tasters), and the rest of us fall somewhere between these two extremes.

So what exactly does drinking a cup of bitter coffee have to do with chronic sinus infections, which account for approximately 18-22 million physician visits in the U.S. each year? Recent investigations have shown that these taste receptors (known as T2Rs) are also found in both upper and lower human respiratory tissue, likely signaling a connection between activation of bitter tastes and the need to launch an immune response in these areas when they are exposed to potentially harmful bacteria and viruses.

"With this information in mind, we wanted to better understand the exact role that bitter taste receptors play in the upper airway, especially between these super and non-tasters," says Noam Cohen, MD, PhD, assistant professor of Otorhinolaryngology: Head and Neck Surgery, staff physician at the Philadelphia VAMC, and senior author of the new study.

Cohen and his colleagues formulated the following hypotheses around the connection: (1) bitter taste receptors are functional in the nose (upper respiratory tract), and each receptor detects a specific type of bacteria; (2) upon activation by a specific bacterial product, the bitter taste receptor initiates a local defensive response to combat the attacking bacteria; and (3) genetic variability of the bitter taste receptors alters the vigorousness of the response, thus leaving certain individuals with very strong defenses and others with weak defenses against a specific bacteria.

To test these hypotheses, the team grew cell cultures from sinus and nasal tissue samples collected during sinus surgical procedures. These cultures develop cilia, produce mucus, and reflect many of the defensive workings found inside the nose and sinuses.

They found that one of the bitter taste receptors that functions in upper airway cells, known as T2R38, acts as a type of "security guard" for the upper airway by detecting molecules that a certain class of bacteria secretes. "These molecules instruct other bacteria to form a biofilm, which helps harbor the bacteria. From previous work, we know that these biofilms spur the immune system to mount an over-exuberant inflammatory response that can lead to sinusitis symptoms. When the T2R38 receptor detects these molecules, it activates local defensive maneuvers to increase mucus clearance and kill the invading bacteria. It's really like modern warfare – intercept the enemies' early communications to thwart their plans and win the battle," Cohen said.

Through the cultures, the research team demonstrated that super-tasters detect very small concentrations of the offending molecules, while non-tasters and the middle-ground individuals require 100 times more of the molecule for detection. The research team also examined the patients that the original sinus tissue samples were collected from. They found that none of the super tasters were infected with the specific type of bacteria that are detected by the T2R38 receptor, known as a gram-negative bacteria.

"Based on these findings, we believe that other bitter taste receptors in the airway perform the same "guard duty" function for early detection of attack by different types of bacteria, and we hope to translate these findings into personalized diagnostics for patients with chronic rhinosinusitis," Cohen says.

The research team is also using the results of the current study to develop a simple "taste-test" protocol to be conducted during clinic visits. "We're optimistic that a test of this nature will help us predict who is at risk to develop biofilms based on their ability to taste various bitter compounds. Additionally, we are looking at therapeutic outcomes, both surgical and medical, based on the taster/non-taster genetic status to determine whether knowing this status will stratify patients to either surgical or medical interventions."

Other study authors from Penn include Robert J. Lee (first author), Jennifer M. Kofonow, Bei Chen, Laurel Doghramji, Nithin D. Adappa, James N. Palmer, David W. Kennedy, Paschalis-Thomas Doulias, and Harry Ischiropoulos.

Funding for the study came from the Flight Attendants Medical Research Institute 082478 (NAC), and a philanthropic contribution from the RLG Foundation, Inc. (NAC), as well as several grants from the National Institute on Deafness and Other Communication Disorders to the Monell collaborators.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Jessica Mikulski | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>