Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: mechanism that controls cell movement linked to tumors becoming more aggressive

08.12.2010
Researchers at the University of Georgia have discovered a central switch that controls whether cells move or remain stationary. The misregulation of this switch may play a role in the increased movement of tumor cells and in the aggressiveness of tumors themselves.

"Malignant cancer arises when cancer cells acquire the ability to move away from their primary tissue location," said Natalia Starostina assistant research scientist in the UGA department of cellular biology and lead author of the research. "The control of cell movement is a fundamental aspect of animal development, and defects in cell movements can have devastating results ranging from tumor metastasis to vascular disease."

The movement of cells requires the "remodeling" of a supporting cell structure called the actin cytoskeleton. Starostina's research focused on how actin remodeling is controlled and how this regulates the movement of cancer cells.

The study was just published in the journal Developmental Cell. In addition to Starostina, other authors include Jennifer Simpliciano, undergraduate student; Michael McGuirk, lab technician; and Edward Kipreos, head of the lab. Cellular biology is a division of biological sciences in the Franklin College of Arts and Sciences.

The research by Kipreos' group focused on an unlikely source to control cell movement, a CKI protein.CKIs were originally identified as inhibitors of the cell cycle that function in the nucleus to prevent cells from dividing. Surprisingly, in the last few years, scientists noticed that certain very aggressive tumor cells had high levels of CKI in the cytoplasm, which is the part of the cell surrounding the nucleus.

Kipreos' team discovered that a protein known as LRR-1 degrades a CKI called p21 specifically in the cytoplasm of human cells. If LRR-1 is inactivated, then p21 accumulates in the cytoplasm, where it induces the remodeling of the actin cytoskeleton and increases cell movement. One unique aspect of this discovery is that LRR-1 only affects p21 levels in the cytoplasm (where p21 regulates the actin cytoskeleton) but not in the nucleus (where p21 inhibits cell division).

"The finding that LRR-1 controls p21 levels only in the cytoplasm was unexpected," said Kipreos, who also is a researcher in the UGA Cancer Center.

The accumulation of p21 in the cytoplasm causes the rearrangement of the actin cytoskeleton so that rod-like filaments made of actin are broken down, and the released actin is relocated to the periphery of cells where it promotes cell movement.

"While it was known that p21 is involved in remodeling the cytoskeleton, nobody had looked at its effects on cell motility," said Kipreos.

Scientists had previously observed that the accumulation of cytoplasmic p21 in a number of human cancers is associated with high tumor grade and poor prognosis. The Kipreos team's research shows that tumor cells with cytoplasmic CKI have increased movement, suggesting the reason these tumor cells are more aggressive is because their enhanced cell movements lead to metastasis in which the cancer spreads through the body.

"This work provides a key insight into how the movement of cells is controlled and explains why cancers with high cytoplasmic CKI levels are so aggressive," said Kipreos.

The team's initial breakthrough in linking LRR-1 to the degradation of CKI came from studying the small roundworm Caenorhabditis elegans. They found that in the worm LRR-1 specifically degrades the nuclear form of CKI to allow cells to divide.

"We thought it was very interesting that in worms, LRR-1 degrades a CKI in the nucleus to regulate cell division, while in humans, it degrades a CKI in the cytoplasm to control cell movement," said Starostina.

Exactly how the new information might be used to develop diagnostics or therapies to treat cancer awaits development. But the discovery of this new regulatory pathway gives researchers a target that could one day allow them to slow the spread of tumors or halt cancer cells in their tracks.

For more information about the UGA department of cellular biology, see http://www.uga.edu/cellbio/. For more information about the UGA Cancer Center, see http://www.uga.edu/cancercenter

Edward Kipreos | EurekAlert!
Further information:
http://www.uga.edu
http://www.uga.edu/cancercenter

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>