Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies novel role for a protein that could lead to new treatments for rheumatoid arthritis

23.05.2011
A new study by rheumatologists at Hospital for Special Surgery in New York has shown that a powerful pro-inflammatory protein, tumor necrosis factor (TNF), can also suppress aspects of inflammation.

The researchers say the identification of the mechanism of how this occurs could potentially lead to new treatments for diseases such as rheumatoid arthritis. The study was published May 22 online in advance of publication in the journal Nature Immunology.

"Prior to this study, TNF has long been known as a potent pro-inflammatory cytokine, but if you look carefully through the literature, there are hints that it also has some suppressive functions, but nothing was known about the mechanisms," said Lionel Ivashkiv, M.D., associate chief scientific officer and physician in the Arthritis and Tissue Degeneration Program at Hospital for Special Surgery who led the study. "This is really the first mechanism showing how TNF can turn inflammation down."

Because many proteins have homeostatic functions, both driving and suppressing certain actions so a cell can maintain internal equilibrium, researchers thought TNF might not be an exception. "Most strong activators in the immune system trigger a feedback response to restrain the amount of inflammation," Dr. Ivashkiv said.

To find out, researchers designed experiments stimulating macrophages with lipopolysaccharide (LPS), a prototypical inflammatory factor that stimulates receptors important in inflammation. In test tube studies, the researchers treated human monocytes and macrophages, cells that have a key role in inflammatory diseases, with TNF and then challenged these cells with LPS. They found that the TNF suppressed the inflammatory response of the macrophages and monocytes. They then gave mice low doses of TNF followed by high doses of LPS and found that the mice were protected from the effects of high dose LPS, which is usually lethal. They discovered that the mechanism by which TNF suppressed the inflammatory response involved a protein known as GSK3 (glycogen synthase kinase 3-alpha) and a gene known as TNFAIP3 that encodes the A20 protein. Experiments with a drug that can inhibit GSK3 as well as experiments with RNA interference of A20, which can block A20 gene function, helped identify the roles of this protein and gene.

The researchers say the findings could be used to develop potential therapies for diseases, such as rheumatoid arthritis. "We think it is relevant to rheumatoid arthritis, not only because the cells we are studying (the macrophages) are exactly the same cells that migrate into joints and make the inflammatory cytokines involved in rheumatoid arthritis, but because A20 is involved. TNFAIP3 is one of the best linked genes to rheumatoid arthritis," Dr. Ivashkiv said. "There are polymorphisms in the A20 gene that have been linked to RA pathogenesis."

The researchers hypothesize that patients who make less A20 are more susceptible to inflammation and thus rheumatoid arthritis. One approach to treating RA could be to increase A20 levels in patients who naturally make less A20 by manipulating GSK-3, since this study showed that GSK-3 influences A20. "The study sort of opens a line of investigation to understanding how A20 levels can be manipulated in patients with various diseases," Dr. Ivashkiv said.

The findings could be applied to other diseases besides arthritis. In conditions such as rheumatoid arthritis, you may want to boost A20, but in other settings such as cancer, where the macrophages are suppressed, you may want to inhibit A20 expression.

"What the study shows that is new is that TNF has suppressive functions in addition to its well-known activating functions," Dr. Ivashkiv said. "Before this study, people thought it might suppress adaptive immunity, but surprisingly we found that it actually suppresses a cell of the innate immune system, the macrophage, which is the same cell that makes it and, by doing that, it regulates its own production."

Other Hospital for Special Surgery scientists involved in the study include Sung Ho Park, Kyung-Hyun Park-Min, M.D.; Janice Chen, and Xiaoyu Hu, M.D., Ph.D.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 3 in rheumatology, No. 16 in neurology and No. 18 in geriatrics by U.S. News & World Report (2010-11), and has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center, and has one of the lowest infection rates in the country. From 2007 to 2011, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Cornell Medical College. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at http://www.hss.edu/.

For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu/

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>