Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds new role for protein in hearing

16.08.2011
A protein involved in sound sensing in the inner ear may also play a role in transmitting sound information to the brain; the protein -- harmonin -- is mutated in Usher syndrome, one of the most common forms of deaf-blindness in humans

University of Iowa scientists have discovered a new role for a protein that is mutated in Usher syndrome, one of the most common forms of deaf-blindness in humans. The findings, which were published Aug. 8 in Nature Neuroscience, may help explain why this mutation causes the most severe form of the condition.

The study suggests that the protein called harmonin, which is known to be involved in sound sensing in the inner ear, may also play a role in the transmission of sound information to the brain.

Hearing starts with the transmission of sound by inner hair cells in the ear. Sound waves cause movement of special structures called stereocilia on the tips of the hair cells. Harmonin is thought to mediate this movement, which then activates the cells and initiates transmission of sound information as electrical and chemical signals to the brain.

"Most of the research until now has concentrated on the input end of the inner hair cells where the sound waves produce motion of the stereocilia," said Amy Lee, Ph.D., senior study author and UI associate professor in the Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology. "Now we have found a new role for harmonin at the opposite end of these sound-sensing inner hair cells where it appears to control the signal output of the cell."

Lee and colleagues, including UI postdoctoral fellows Frederick Gregory, Ph.D., and Keith Bryan, Ph.D., found that harmonin is important for regulating the number of calcium channels present at the sound-transmitting synapse of inner hair cells.

Studies from other labs have shown that too few or too many calcium channels at the hair cell synapse cause deafness in mice. This means factors that control how many channels are available are likely to be important for normal hearing.

"Harmonin appears to precisely control how many channels are available," Lee said. "What we think is happening in Usher syndrome where the harmonin protein is mutated is that there are too many calcium channels available, which causes abnormal signaling at the synapses.

"We are most excited about the idea that this mutation could contribute to the disease process of Usher syndrome in a way that was not imagined before," Lee added. "It may eventually be possible to alter this interaction between harmonin and the calcium channels in a way that might be useful as a therapy for patients with this form of Usher syndrome."

Harmonin is also expressed in the retina -- the light-sensitive tissue in the eye -- which is affected in Usher syndrome, and there are calcium channels in the photoreceptor cells of the retina. It is not known how the harmonin mutation affects the retina and how it might contribute to blindness in Usher syndrome, but that is another area of research Lee's team hopes to investigate.

In addition to Lee, Gregory and Bryan, the research team included Tina Pangrsic and Tobias Moser at the University of Goettingen, Germay, and Irina Calin-Jageman at Dominican University, River Forest, Ill.

The study was funded in part by grants from the National Institutes of Health and the Deafness Research Foundation.

STORY SOURCE: University of Iowa Health Care Media Relations, 200 Hawkins Drive, Room W319 GH, Iowa City, Iowa 52242-1009

MEDIA CONTACT: Jennifer Brown, 319-356-7124, jennifer-l-brown@uiowa.edu

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>