Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study advances gene therapy for glaucoma

17.01.2018

While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains to control fluid pressure in the eye.

Genes can't work until they enter a cell.


In an effort to improve gene transfer to treat the blinding disease glaucoma, the front of an untreated eye (left) is compared to an eye (right) pretreated with a gene delivery enhancer. The green marker reveals the expression of a new gene in the trabecular meshwork, which drains fluid from the eye and is usually blocked in glaucoma. The green band resulting from gene transfer is denser and wider in the enhancer-treated eye.

Credit: Curtis Brandt/Paul Kaufman, University of Wisconsin-Madison

Glaucoma, one of the most common blinding diseases, is caused by excess pressure inside the eye, usually due to a clog in the fluid drain. "Most glaucoma can be treated with daily drug treatment," says Paul Kaufman, professor of ophthalmology and visual sciences at the University of Wisconsin-Madison.

"Replacement genes could, theoretically, restore normal fluid flow for years on end, without requiring daily self-administration of eye drops that is inconvenient and may have local or even systemic side effects."

In a study published today in the scientific journal Investigative Ophthalmology and Visual Science, Kaufman and Curtis Brandt, a fellow professor of ophthalmology and visual sciences at UW-Madison, showed an improved tactic for delivering new genes into the drain, called the trabecular meshwork.

The colleagues have been testing a vector based on feline immunodeficiency virus (FIV) to deliver the genes. Like the related human immunodeficiency virus, FIV can insert genes into the host's DNA. The eye's innate defenses against FIV, however, interfered with the delivery.

Virus particles contain genes wrapped in a protein coat and then a lipid membrane. After the virus enters the cell and sheds its membrane, defensive molecules from the host can "drag the virus particle to the cell's garbage disposal, called the proteasome, where it is degraded," Brandt says. "We wanted to know if temporarily blocking the proteasome could prevent the destruction of the gene delivery vector and enhance delivery."

In the current study, FIV virus carrying a marker protein was placed on cells of the trabecular meshwork, with or without a chemical that blocks proteasomes.

Above a dosage threshold, the treatment roughly doubled the transfer of genes entering the target cells, Brandt says. The new genes also spread more uniformly across the meshwork tissue. Delivering more copies of the gene should give a greater therapeutic effect, opening the meshwork drain and reducing pressure inside the eye.

The present study concerns the tools for transferring genes, not the genes themselves, Brandt says. But even before the current study, he says he and Kaufman "have already identified at least two genes that could unplug the drain."

In the long struggle to replace genes and cure disease, "eyes have been one of the big success stories," Brandt says. A blinding eye disease called Leber's congenital amaurosis damages the function of cells that keep the light-sensitive cells healthy; replacing the mutated genes has preserved and even improved vision in young patients. Approval for this gene therapy is now pending at the Food and Drug Administration.

To forestall danger from injecting a virus, "We take out pretty much all of the virus' genes, so it has no chance to replicate and spread from where it's initially injected," says Brandt.

Although the technique does interfere with the anti-viral defense in the eye, the effect is temporary. "You encounter the drug once, then it is metabolized, and the innate inhibition is lost," Brandt says.

"We have shown that this strategy does work in eye organ culture," Brandt says. "Once we do further work on efficiency and identify which gene to deliver, then we are probably ready to move toward clinical trials."

###

The research was supported by Bright Focus Foundation, Research to Prevent Blindness, the National Institutes of Health, and other sources.

David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Media Contact

Curtis Brandt
crbrandt@wisc.edu
608-262-8054

 @UWMadScience

http://www.wisc.edu 

Curtis Brandt | EurekAlert!

More articles from Health and Medicine:

nachricht Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place
23.07.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht FAU researchers identify Parkinson's disease as a possible autoimmune disease
23.07.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>