Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strategy Developed to Improve Delivery of Medicines to the Brain

10.09.2012
NIH researchers use rodent study to uncover novel approach

New research offers a possible strategy for treating central nervous system diseases, such as brain and spinal cord injury, brain cancer, epilepsy, and neurological complications of HIV.

The experimental treatment method allows small therapeutic agents to safely cross the blood-brain barrier in laboratory rats by turning off P-glycoprotein, one of the main gatekeepers preventing medicinal drugs from reaching their intended targets in the brain.

The findings appeared online Sept. 4 in the Proceedings of the National Academy of Sciences, and is the result of a study from scientists at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health.

“Many promising drugs fail because they cannot cross the blood-brain barrier sufficiently to provide a therapeutic dose to the brain,” said David Miller, Ph.D., head of the Laboratory of Toxicology and Pharmacology at NIEHS, and leader of the team that performed the study. “We hope our new strategy will have a positive impact on people with brain disorders in the future.”

In a two-pronged approach, the research team first determined that treating rat brain capillaries with the multiple sclerosis drug marketed as Gilenya (fingolimod) stimulated a specific biochemical signaling pathway in the blood-brain barrier that rapidly and reversibly turned off P-glycoprotein. Team members then pretreated rats with fingolimod, and administered three other drugs that P-glycoprotein usually transports away from the brain. They observed a dramatic decline in P-glycoprotein transport activity, which led to a threefold to fivefold increase in brain uptake for each of the three drugs.

Ronald Cannon, Ph.D., is a staff scientist in the Miller lab and first author on the paper. He said one of the burning questions the team wants to tackle next is to understand how the signaling system turns off P-glycoprotein. He equates the mechanism to what happens when a person flips a light switch.

“If you physically turn off a light using the button on the wall, the light will go out because the electrical current to the light bulb has been interrupted,” Cannon explained. “But what happens when the signaling pathway shuts down P-glycoprotein? Does it bring in another protein to bind to the pump, take away its energy source, modify the structure of the pump, or something else?”

Cannon said the paper’s findings open a new way of thinking regarding targets for drug design, a thought that is emotionally gratifying for him and many other researchers whose scientific discoveries generally don’t directly translate into helping people with illnesses.

“Although much more research needs to be done, delivering therapeutics to the central nervous system is one of the final frontiers of pharmacotherapy, Cannon added.”

NIEHS supports research to understand the effects of the environment on human health and is part of NIH. For more information on environmental health topics, visit http://www.niehs.nih.gov. Subscribe to one or more of the NIEHS news lists (http://www.niehs.nih.gov/news/newslist/index.cfm) to stay current on NIEHS news, press releases, grant opportunities, training, events, and publications.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health ®

Reference: Cannon RE, Peart JC, Hawkins BT, Campos CR, Miller DS. 2012. Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc Natl Acad Sci U S A; doi:10.1073/pnas.1203534109 [Online 4 September 2012].

Robin Arnette | Newswise Science News
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Study points to new drug target in fight against cancer
19.09.2019 | Rice University

nachricht Researchers develop tumour growth roadmap
19.09.2019 | Universität Leipzig

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>