Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stimulation of brain hormone action may improve pneumonia survival

31.01.2012
An international research team may have found a way to block a second wave of death that can result from pneumonia treatment.

Antibiotics are effective at killing pneumococcus – the cause of about 50 percent of pneumonias – but as it dies the bacterium releases potentially lethal toxins.

Adding an agonist that mimics the action of growth hormone-releasing hormone – which ultimately enables growth – may stop that second wave, according to research published in the Proceedings of the National Academy of Sciences.

"You have to take antibiotics, if you don't, the bugs will grow and you most likely will die anyway," said Dr. Rudolf Lucas, vascular biologist at the Medical College of Georgia at Georgia Health Sciences University.

Problems start when a bacterium that causes pneumonia, in this case pneumococcus, is inhaled. Symptoms include mucus buildup, cough, fever, chills and shortness of breath. Antibiotics are the front line treatment to kill the infection.

An unfortunate result of bacterium death is release of pneumolysin, a toxin that can trigger formation of holes in the walls of the millions of tiny air sacs and blood vessels in the lungs. The result is that fluid, blood and other products find their way into air sacs that were intended for oxygen exchange.

"It's like making a hole in a bucket," said Lucas. He and Dr. Andrew V. Schally, Distinguished Leonard M. Miller Professor of Pathology & Professor of Hematology/Oncology at the University of Miami Miller School of Medicine, are co-corresponding authors on the study.

Pneumolysin naturally binds to cholesterol, a component of all cell membranes including cells lining the air sacs, or alveoli. Once attached to the membrane, the toxin produces complexes that make holes in the membranes of the air sacs before escaping to do similar damage to nearby capillaries. While the close proximity of capillaries normally enables air sacs to replenish blood with oxygen and to remove carbon dioxide, the now open exchange enables fluid and cells from the capillaries to penetrate air sacs as well as the space in between them. To make matters worse, the toxin also blocks a protective sodium uptake system in the lungs that can help remove fluids. Within a few days, the patient is back in jeopardy. "These patients are being treated with an antibiotic and aggressive intensive care support and they (can) still die," Lucas said.

Schally, a Nobel Prize recipient for his discovery of hypothalamic hormones and Head of The Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center in Miami, developed the agonist that may one day make the difference for these patients. The agonist was previously shown to help protect heart muscle in the aftermath of a heart attack.

Surprisingly, GHSU scientists detected receptors for growth hormone releasing hormone in cells lining the air sacs. Typically, growth hormone-releasing hormone is produced by the hypothalamus then goes to the pituitary which makes and releases growth hormone. "We were asking ourselves, what is it doing there?" Lucas said.

They got a clue when they applied the agonist to the growth hormone-releasing hormone in an animal model of pneumonia as well as human lung cells in culture: leaking was significantly reduced and beneficial sodium uptake was restored. Conversely, when they applied a hormone antagonist – to block its action – lung cells became leaky even without toxin exposure, further indicating the hormone's apparent role in protecting the lining of the air sacs and capillaries.

"This is an acute problem; dangerous lung fluid accumulation occurs within days in patients," said Lucas who anticipates the agonist, or a compound with a similar function, could someday be given to patients in those first few critical days to avoid the second onslaught.

As a result of the findings, extensive collaborative studies are being planned on the use of growth hormone-releasing hormone agonists to prevent edema in patients with bacterial pneumonia. Next steps include pursing a National Institutes of Health grant with Dr. Michael A. Matthay, Senior Associate, Cardiovascular Research Institute, University of California, San Francisco, to support more studies that include an isolated human lung model and a preclinical model of laboratory animals who follow the same course as patients: they are infected with the bacterium then given an antibiotic. In the model for the PNAS study, scientists gave the resulting toxin directly.

Dr. Trinad Chakraborty, Dean of the Faculty of Medicine at the University of Giessen in Germany, developed the purified toxin used for the study. Study co-authors Dr. Richard White, GHSU pharmacologist, showed restoration of sodium uptake, and Dr. Supriya Sridhar, GHSU research associate, performed the cell permeability experiments. University of Miami co-authors included Dr. Norman L. Block, Professor of Pathology, Urology, Oncology and Biomedical Engineering, as well as Dr. Ferenc G. Rick, Assistant Research Professor of Pathology.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>