Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Spills at Gas Stations Could Cause Significant Public Health Risks Over Time

09.10.2014

Soil and groundwater may be imperiled more than previously understood

A new study suggests that drops of fuel spilled at gas stations — which occur frequently with fill-ups — could cumulatively be causing long-term environmental damage to soil and groundwater in residential areas in close proximity to the stations.

Few studies have considered the potential environmental impact of routine gasoline spills and instead have focused on problems associated with large-scale leaks. Researchers with the Johns Hopkins Bloomberg School of Public Health, publishing online Sept. 19 in the Journal of Contaminant Hydrology, developed a mathematical model and conducted experiments suggesting these small spills may be a larger issue than previously thought.

"Gas station owners have worked very hard to prevent gasoline from leaking out of underground storage tanks,” says study leader Markus Hilpert, PhD, a senior scientist in the Department of Environmental Health Sciences in the Johns Hopkins Bloomberg School of Public Health. “But our research shows we should also be paying attention to the small spills that routinely occur when you refill your vehicle's tank.”

Over the lifespan of a gas station, Hilpert says, concrete pads underneath the pumps can accumulate significant amounts of gasoline, which can eventually penetrate the concrete and escape into underlying soil and groundwater, potentially impacting the health of those who use wells as a water source. Conservatively, the researchers estimate, roughly 1,500 liters of gasoline are spilled at a typical gas station each decade.

“Even if only a small percentage reaches the ground, this could be problematic because gasoline contains harmful chemicals including benzene, a known human carcinogen,” Hilpert says.
Hilpert and Patrick N. Breysse, PhD, a professor in the Department of Environmental Health Sciences, developed a mathematical model to measure the amount of gasoline that permeates through the concrete of the gas-dispensing stations and the amount of gasoline that vaporizes into the air.

The model demonstrates that spilled gasoline droplets remain on concrete surfaces for minutes or longer, and a significant fraction of spilled gasoline droplets infiltrate into the pavement, as concrete is not impervious.

“When gasoline spills onto concrete, the droplet will eventually disappear from the surface. If no stain is left behind, there has been a belief that no gasoline infiltrated the pavement, and all of it evaporated,” Hilpert says. “According to our laboratory-based research and supported by our mathematical model, this assumption is incorrect. Our experiments suggest that even the smallest gasoline spills can have a lasting impact.”

Since the health effects of living near gasoline stations have not been well studied, Breysse says there is an urgency to look more closely, especially since the new trend is to build larger filling stations with many more pumps. These stations continue to be located near residential areas where soil and groundwater could be affected.

“The environmental and public health impacts of chronic gasoline spills are poorly understood,” says Breysse. “Chronic gasoline spills could well become significant public health issues since the gas station industry is currently trending away from small-scale service stations that typically dispense around 100,000 gallons per month to high-volume retailers that dispense more than 10 times this amount."

“In a perfect world, it would be ideal to avoid chronic spills,” Hilpert says. “However, if these spills do occur, it is also important to prevent rainwater from flowing over the concrete pads underneath the pumps. Otherwise, storm runoff gets contaminated with benzene and other harmful chemicals and can infiltrate into adjacent soil patches or form stormwater that may end up in natural bodies of water.”

“Infiltration and Evaporation of Small Hydrocarbon Spills at Gas Stations” was written by Markus Hilpert and Patrick N. Breysse.

Contact Information

Nicole Hughes
443-287-2905; nhughes4@jhu.edu
Stephanie Desmon
410-955-7619; sdesmon1@jhu.edu

Nicole Hughes | newswise
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>