Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sloppy Shipping of Human Retina Leads Researchers to Discover New Treatment Path for Eye Disease

07.05.2012
Sloppy shipping of a donated human retina to an Indiana University researcher studying a leading cause of vision loss has inadvertently helped uncover a previously undetected mechanism causing the disease. The discovery has led researchers to urge review of how millions of dollars are spent investigating the cause of a type of age-related macular degeneration called choroidal neovascularization.

Working at IU's Biocomplexity Institute, postdoctoral researcher Abbas Shirinifard had hit a brick wall trying to develop detailed computer simulations of the behaviors and interactions of the cells and membranes composing the rear of the retina and its supporting vasculature. In choroidal neovascularization (CNV), blood vessels that supply the eye with oxygen and nutrients and originate in the choroid just behind the eye abruptly break into the retina and disrupt it. Blindness can follow in a matter of months.

Two current treatments for CNV either kill the invading blood vessels with drugs injected into the eye (also damaging the retina and killing needed blood vessels as well) or laser-heat the blood vessels, which can cause damaging retinal scars. Yet with 9,000 research papers published on CNV over the past 10 years, neither treatment still addresses the underlying problems that cause the blood vessels to invade, so relapses are common and many patients still lose vision within a year or two.

A serendipitous accident in which a donated human retina from an eye bank was severely shaken during shipping inspired Shirinifard to try again with a series of new simulations. Upon examination of the eye, Shirinifard and Biocomplexity Institute senior microscopist Sherry Clendenon found that regions of the retina with invading blood vessels had separated from their underlying membrane, while regions that had stayed attached showed much less invasion, suggesting that adhesion might be an essential but overlooked mechanism in maintaining the retina's structure.

Using an open-source modeling software program called CompuCell3D developed by the Biocomplexity Institute in collaboration with the University of Washington and the University of Wisconsin under National Institutes of Health funding, the team quickly began extending existing simulations to study the effects of adhesion defects.

"The simulations showed that reduced adhesion in the retina could indeed lead to its invasion by blood vessels," Shirinifard said. "But the complex structure of the retina meant that many types of adhesion could be important -- the three most prominent being between the pigmented retinal cells (the black lining of the eye) and Bruch's membrane (the substrate that supports the retina), between adjacent pigmented retinal cells, and between pigmented retinal cells and the overlying photoreceptors."

Those variables, the team realized, could be independent of one another or interact in complex ways, and knowing that the rate and type of progression of the disease varies greatly from patient to patient, they needed to examine many examples of each adhesion combination.

That's when Quarry, the IU computer cluster operated by the Office of the Vice President for Information Technology, was called in to push out 32,000 hours of calculations.

"We were able to model the interactions of different degrees of impairment of each type of adhesion and the variation from case to case," Shirinifard said. "Amazingly, these simulations were able to replicate the complex spectrum of CNV seen in the clinic."

Simulations of adhesion defects caused by reduced adhesion between pigmented retinal cells and Bruch's membrane -- the type of CNV typical of aging -- produced a pattern and frequency of invasion agreeing with that in the clinic. Similarly, reduced adhesion between neighboring pigmented retinal cells, typical of inflammation due to severe infection, produced a pattern of invasion agreeing with that seen in young adults.

By combining thousands of simulations, Shirinifard was able to produce maps that related defects in each type of adhesion to the risk of each type of invasion. In turn, he could show that cell adhesion is key to keeping blood vessels out of the retina and that combination defects in the different types of adhesion are sufficient to determine the probability, pattern and rate of progression of CNV.

The full results of one of the most complex tissue evolution models ever deployed were published today in PLoS Computational Biology, and while the team has yet to move toward developing new CNV therapies, the work should have great significance in the search for better therapies, according to Biocomplexity Institute Director James Alexander Glazier, a co-author on the paper and professor in the IU Bloomington College of Arts and Sciences' Department of Physics.

"Hundreds of millions of dollars are spent annually to develop drugs and treatment approaches based on the two commonly hypothesized CNV initiation and progression mechanisms," he said. "Because the current work shows that neither hypothesized mechanism is an important cause of CNV, that money and effort are extremely unlikely to improve outcomes for patients. Scientists have been barking up the wrong tree. Instead, a search for therapies which restore normal adhesion in the eye is much more likely to produce effective treatments. In addition, the detailed agreement between simulation and clinical observations suggests that new approaches to measuring adhesion in patients would allow much more accurate predictions of the prognosis for individual patients."

The researchers believe these results will also have a much broader impact, as they apply to any tissue -- like the gut and the lung -- in which a basement membrane separates a capillary network from a nearby epithelium.

"The relationships between specific classes of adhesion failures and the types and dynamics of CNV in the eye simulations should carry over to the neovascularization-dependent pathologies of those tissues and to invasion of those tissues in cancer progression," Shirinifard said.

Co-authors on the paper, "Adhesion Failures Determine the Pattern of Choroidal Neovascularization in the Eye: A Computer Simulation Study," with Shirinifard and Glazier were associate scientists Maciej Swat and J. Scott Gens, both of the Biocomplexity Institute and the Department of Physics; Fereydoon Family and Hans E. Grossniklaus, M.D., of Emory University; and Yi Jiang of Georgia State University and Los Alamos National Laboratory.

| Newswise Science News
Further information:
http://www.indiana.edu

More articles from Health and Medicine:

nachricht Tuberculosis: New drug substance BTZ-043 is being tested on patients for the first time
11.12.2019 | Klinikum der Universität München

nachricht Lighting up cardiovascular problems using nanoparticles
10.12.2019 | University of Southern California

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

One-third of recent global methane increase comes from tropical Africa

11.12.2019 | Earth Sciences

Creating switchable plasmons in plastics

11.12.2019 | Physics and Astronomy

The Antarctic: study from Kiel provides data about the structure of the icy continent

11.12.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>