Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single concussion may cause lasting brain damage

12.03.2013
A single concussion may cause lasting structural damage to the brain, according to a new study published online in the journal Radiology.

"This is the first study that shows brain areas undergo measureable volume loss after concussion," said Yvonne W. Lui, M.D., Neuroradiology section chief and assistant professor of radiology at NYU Langone School of Medicine. "In some patients, there are structural changes to the brain after a single concussive episode."

According to the Centers for Disease Control and Prevention, each year in the U.S., 1.7 million people sustain traumatic brain injuries, resulting from sudden trauma to the brain. Mild traumatic brain injury (MTBI), or concussion, accounts for at least 75 percent of all traumatic brain injuries.

Following a concussion, some patients experience a brief loss of consciousness. Other symptoms include headache, dizziness, memory loss, attention deficit, depression and anxiety. Some of these conditions may persist for months or even years.

Studies show that 10 to 20 percent of MTBI patients continue to experience neurological and psychological symptoms more than one year following trauma. Brain atrophy has long been known to occur after moderate and severe head trauma, but less is known about the lasting effects of a single concussion.

Dr. Lui and colleagues set out to investigate changes in global and regional brain volume in patients one year after MTBI. Twenty-eight MTBI patients (with 19 followed at one year) with post-traumatic symptoms after injury and 22 matched controls (with 12 followed at one year) were enrolled in the study. The researchers used three-dimensional magnetic resonance imaging (MRI) to determine regional gray matter and white matter volumes and correlated these findings with other clinical and cognitive measurements.

The researchers found that at one year after concussion, there was measurable global and regional brain atrophy in the MTBI patients. These findings show that brain atrophy is not exclusive to more severe brain injuries but can occur after a single concussion.

"This study confirms what we have long suspected," Dr. Lui said. "After MTBI, there is true structural injury to the brain, even though we don't see much on routine clinical imaging. This means that patients who are symptomatic in the long-term after a concussion may have a biologic underpinning of their symptoms."

Certain brain regions showed a significant decrease in regional volume in patients with MTBI over the first year after injury, compared to controls. These volume changes correlated with cognitive changes in memory, attention and anxiety.

"Two of the brain regions affected were the anterior cingulate and the precuneal region," Dr. Lui said. "The anterior cingulate has been implicated in mood disorders including depression, and the precuneal region has a lot of different connections to areas of the brain responsible for executive function or higher order thinking."

According to Dr. Lui, researchers are still investigating the long-term effects of concussion, and she advises caution in generalizing the results of this study to any particular individual.

"It is important for patients who have had a concussion to be evaluated by a physician," she said. "If patients continue to have symptoms after concussion, they should follow-up with their physician before engaging in high-risk activities such as contact sports."

"Mild Traumatic Brain Injury: Longitudinal Regional Brain Volume Changes." Collaborating with Dr. Lui were Yongxia Zhou, Ph.D., Andrea Kierans, M.D., Damon Kenul, B.S., Yulin Ge, M.D., Joseph Rath, B.S., Joseph Reaume, B.S., and Robert I. Grossman, M.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 51,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>