Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

03.04.2018

Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells.

Prostate cancer is the second most common cancer in men and the fifth leading cause of death from cancer in men worldwide, according to 2012 numbers. While several viable treatment options for prostate cancer exist, many men affected with prostate cancer will not respond to first-line treatments.


University of Toronto researchers developed a liquid biopsy technology to improve prostate cancer treatment.

Credit: University of Toronto


University of Toronto researchers developed a liquid biopsy technology to improve prostate cancer treatment.

Credit: University of Toronto

Researchers in the Department of Pharmaceutical Sciences at the Leslie Dan Faculty of Pharmacy, University of Toronto have developed a new technology for liquid biopsy to identify which patients may not respond to standard therapy before it is delivered.

"Screening for drug resistance is key to improving treatment approaches for many cancers," said Shana Kelley, scientist and professor at the Leslie Dan Faculty of Pharmacy, University of Toronto. "It's important for patients not to be on a therapy that won't help them and it's also important for healthcare systems to avoid, whenever possible, delivering ineffective treatments."

The ability to screen patients using a blood sample as opposed to more invasive techniques required for conventional biopsies is also a step forward.

Kelley, lead investigator on the study published today in Nature Chemistry, explained how her team has advanced a completely new approach using magnetic nanoparticles with DNA capture probes on their surface that can target circulating tumour cells (CTCs) in blood samples to see if the cells contains biomarkers associated with drug resistance.

"We can then trap the individual magnetized cells in a microfluidic device built in the lab, isolating them from all the other cells in the sample and allowing us to perform highly sensitive analysis," Kelley said. The cells with the highest magnetic content will also have high mRNA expression for the biomarker associated with drug resistance.

"This means that patients with high mRNA expression should be considered for other therapies because they won't respond to the first-line treatment."

Targeting CTCs, the cells responsible for spreading cancer, is important because they carry information from the primary tumour that can inform treatment; however, they are outnumbered by a billion-to-one by normal cells in a patient' blood and are therefore extremely challenging to capture. In 2016, Kelley and her team published a study in Nature Nanotechnology that first introduced the microfluidic device and how it could be used to trap and analyze CTCs. The current study builds on this previous work by further targeting a specific biomarker within the CTCs.

The blood samples analyzed were collected from a small cohort of patients undergoing treatment for metastatic prostate cancer. In 10 of the patients tested, CTCs were visualized but only four of the patients exhibited the biomarker associated with drug resistance. This finding demonstrates that the new method can provide both a CTC count and an analysis of the clinically relevant biomarker.

"We are very excited because this is like finding a needle in a haystack. It paves the way for a straightforward and personalized screening tool that allows clinicians to see if a patient will respond to therapy or not. Our method is also rapid, accurate and inexpensive, which gives it real potential for clinical uptake," said Kelley.

As for next steps, the finding must be replicated in a larger study, Kelley explained. Her team is also focused on "scaling up" and expanding the application of this technology to other forms of cancer and other diseases.

"Liquid biopsy is one of the most promising tools emerging for the management of cancer," said Kelley "and we are excited about the potential of our technology to streamline this type of testing."

Media Contact

Kate Richards
kate.richards@utoronto.ca
416-978-7117

 @UofTNews

http://www.utoronto.ca 

Kate Richards | EurekAlert!

More articles from Health and Medicine:

nachricht Skipping Meat on Occasion May Protect Against Type 2 Diabetes
25.06.2019 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

nachricht Inhaling air pollution-like irritant alters defensive heart-lung reflex for hypertension
19.06.2019 | University of South Florida (USF Innovation)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>