Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silent stroke can cause Parkinson's disease

19.12.2012
Scientists at The University of Manchester have for the first time identified why a patient who appears outwardly healthy may develop Parkinson's disease.

Whilst conditions such as a severe stroke have been linked to the disease, for many sufferers the tremors and other symptoms of Parkinson's disease can appear to come out of the blue. Researchers at the university's Faculty of Life Sciences have now discovered that a small stroke, also known as a silent stroke, can cause Parkinson's disease. Their findings have been published in the journal "Brain Behaviour and Immunity".

Unlike a severe stroke, a silent stroke can show no outward symptoms of having taken place. It happens when a blood vessel in the brain is blocked for only a very short amount of time and often a patient won't know they have suffered from one. However, it now appears one of the lasting effects of a silent stroke can be the death of dopaminergic neurons in the substantia nigra in the brain, which is an important region for movement coordination.

Dr. Emmanuel Pinteaux led the research: "At the moment we don't know why dopaminergic neurons start to die in the brain and therefore why people get Parkinson's disease. There have been suggestions that oxidative stress and aging are responsible. What we wanted to do in our study was to look at what happens in the brain away from the immediate area where a silent stroke has occurred and whether that could lead to damage that might result in Parkinson's disease."

The team induced a mild stroke similar to a silent stroke in the striatum area of the brain in mice. They found there was inflammation and brain damage in the striatum following the stroke, which they had expected. What the researchers didn't expect was the impact on another area of the brain, the substantia nigra. When they analysed the substantia nigra they recorded a rapid loss of Substance P (a key chemical involved in its functions) as well as inflammation.

The team then analysed changes in the brain six days after the mild stroke and found neurodegeneration in the substantia nigra. Dopaminergic neurones had been killed.

Talking about the findings Dr Pinteaux said: "It is well known that inflammation following a stroke can be very damaging to the brain. But what we didn't fully appreciate was the impact on areas of the brain away from the location of the stroke. Our work identifying that a silent stroke can lead to Parkinson's disease shows it is more important than ever to ensure stroke patients have swift access to anti-inflammatory medication. These drugs could potentially either delay or stop the on-set of Parkinson's disease."

Dr Pinteaux continued: "What our findings also point to is the importance of maintaining a healthy lifestyle. There are already guidelines about exercise and healthy eating to help reduce the risk of having a stroke and our research suggests that a healthy lifestyle can be applied to Parkinson's disease as well."

Following the publication of these findings, Dr Pinteaux hopes to set up a clinical investigation on people who have had a silent stroke to assess dopaminergic neuron degeneration. In the meantime he will be working closely will colleagues at The University of Manchester to better understand the mechanisms of inflammation in the substantia nigra.

Morwenna Grills | EurekAlert!
Further information:
http://www.manchester.ac.uk

Further reports about: dopaminergic neurons healthy life healthy lifestyle mild stroke

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>