Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short Antibiotic Courses Safer for Breathing-Tube Infections in Children

06.05.2011
Study shows need for judicious use of drugs to curb antibiotic resistance

Short courses of antibiotics appear just as effective as longer ones — and a great deal safer — in treating respiratory infections that might cause pneumonia in children on temporary breathing devices, according to a Johns Hopkins Children’s Center study published online May 3 in Clinical Infectious Diseases.

In the study’s analysis of 150 children treated with antibiotics for respiratory infections while on a ventilator, longer antibiotic courses did not only fail to confer extra protection against full-blown pneumonia when compared with shorter therapy, but also considerably increased a child’s risk for developing drug-resistant infections within a month.

To rein in the spread of bacterial drug resistance, the researchers advise clinicians to carefully evaluate the need for antibiotics in the first place and to use antibiotics for the shortest time needed to achieve clinical effect.

“Our study underscores the old physician maxim to first do no harm,” said lead investigator Pranita Tamma, M. D., an infectious disease specialist at Hopkins Children’s. “Longer treatment is not always more effective, and it could be downright dangerous.”

Children on ventilators often develop respiratory infections, or tracheitis, because the breathing tubes allow bacteria an easy entry into the respiratory tract. These children need antibiotics promptly to prevent the infection from spreading into the lungs, but the optimal length of treatment has been unclear.

“We hope that our findings will help clear up some of the confusion and discourage physicians from preemptively opting for longer treatments,” Tamma said.

The Johns Hopkins investigators analyzed three years worth of medical records involving more than 1,600 children, age 18 and younger, who spent at least two days on a breathing tube. Of them, 150 got antibiotics for ventilator-related upper respiratory infections, however only 118 of them met clinical criteria for such infections, and 32 were treated merely on suspicion of infection.

Of the 82 children with actual infections who were treated with antibiotics for more than a week, 23 percent developed pneumonia, compared to 20 percent of the 36 children who got antibiotics for seven days or fewer. However, children who received the lengthy antibiotic course were five times more likely, on average, to develop drug-resistant infections following the treatment. Children who got multiple antibiotics were three times as likely to do so.

Although the length of antibiotic use made no statistical difference in pneumonia risk, the length of intubation did. Children whose tubes were left in after diagnosis of infection and start of therapy were four times more likely to progress to pneumonia than children taken off the ventilator promptly after diagnosis and start of treatment, the researchers found. The finding emphasizes the need for careful daily reassessment of each child’s need to stay on a ventilator, they added.

Past research has shown that more than one-third of antibiotic prescriptions for upper respiratory infections in the intensive care unit may be unwarranted, the investigators noted.

“Beyond fueling drug resistance, antibiotics can cause serious side effects and add to healthcare costs. We, as physicians, should ask ourselves two critical questions any time we prescribe them: ‘Does this patient really need antibiotics?’ If so, ‘what is the shortest course of treatment that will achieve clinical benefit?’” said senior investigator Sara Cosgrove, M.D., an infectious disease specialist at Hopkins.

Other investigators in the study included Alison Turnbull, Ph.D., Aaron Milstone, M.D., M.H.S., Christoph Lehmann, M.D., and Emily Sydnor, M.D., all of Hopkins.

The research was funded by the National Institutes of Health.

Founded in 1912 as the children's hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, with more than 92,000 patient visits and nearly 9,000 admissions each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. Hopkins Children's will celebrate its 100th anniversary and move to a new home in 2012. For more information, please visit www.hopkinschildrens.org

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Establishing metastasis
25.09.2018 | Medical University of South Carolina

nachricht Artificial intelligence to improve drug combination design & personalized medicine
25.09.2018 | SLAS (Society for Laboratory Automation and Screening)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Working the switches for axon branching

Our brain is a complex network with innumerable connections between cells. Neuronal cells have long thin extensions, so-called axons, which are branched to increase the number of interactions. Researchers at the Max Planck Institute of Biochemistry (MPIB) have collaborated with researchers from Portugal and France to study cellular branching processes. They demonstrated a novel mechanism that induces branching of microtubules, an intracellular support system. The newly discovered dynamics of microtubules has a key role in neuronal development. The results were recently published in the journal Nature Cell Biology.

From the twigs of trees to railroad switches – our environment teems with rigid branched objects. These objects are so omnipresent in our lives, we barely...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Copper-aluminum superatom

26.09.2018 | Life Sciences

New enclosure gives a boost to electrical engineering companies

26.09.2018 | Trade Fair News

Working the switches for axon branching

26.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>