Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Severe flu increases risk of Parkinson's: UBC research

23.07.2012
Severe influenza doubles the odds that a person will develop Parkinson's disease later in life, according to University of British Columbia researchers.

However, the opposite is true for people who contracted a typical case of red measles as children – they are 35 per cent less likely to develop Parkinson's, a nervous system disorder marked by slowness of movement, shaking, stiffness, and in the later stages, loss of balance.

The findings by researchers at UBC's School of Population and Public Health and the Pacific Parkinson's Research Centre, published online this month in the journal Movement Disorders, are based on interviews with 403 Parkinson's patients and 405 healthy people in British Columbia, Canada.

Lead author Anne Harris also examined whether occupational exposure to vibrations – such as operating construction equipment – had any effect on the risk of Parkinson's. In another study, published online this month by the American Journal of Epidemiology, she and her collaborators reported that occupational exposure actually decreased the risk of developing the disease by 33 percent, compared to people whose jobs involved no exposure.

Meanwhile, Harris found that those exposed to high-intensity vibrations – for example, by driving snowmobiles, military tanks or high-speed boats – had a consistently higher risk of developing Parkinson's than people whose jobs involved lower-intensity vibrations (for example, operating road vehicles). The elevated risk fell short of the statistical significance typically used to establish a correlation, but was strong and consistent enough to suggest an avenue for further study, Harris says.

"There are no cures or prevention programs for Parkinson's, in part because we still don't understand what triggers it in some people and not others," says Harris, who conducted the research while earning her doctorate at UBC. "This kind of painstaking epidemiological detective work is crucial in identifying the mechanisms that might be at work, allowing the development of effective prevention strategies."

BACKGROUND | Severe flu increases risk of Parkinson's

Parkinson's disease results when brain cells that make the neurotransmitter dopamine are destroyed, preventing the brain from transmitting messages to muscles. The disease typically strikes people over age 50. Although some cases are genetic in origin, the cause for most cases of the disease is still unknown; possible explanations include repeated head trauma, or exposure to viruses or chemical compounds.

Treatment: There is no cure for Parkinson's, only medications to treat the symptoms.

Funding: Support was provided by the Canadian Institutes of Health Research, WorkSafeBC, the Pacific Parkinson's Research Centre and the British Columbia Ministry of Health.

Brian Kladko | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Health and Medicine:

nachricht Underwater Snail-o-Bot gets kick from light
27.02.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Existing drugs may offer a first-line treatment for coronavirus outbreak
27.02.2020 | Norwegian University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>